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ABSTRACT

We present an extensive experimental and theoretical study of Josephson-junction

arrays with both short- and long-range interaction. We first investigate the effects of

current direction on the dynamical properties of rf and dc current-biased overdamped

Josephson-junction arrays with short-range interaction in the presence of magnetic flux.

We show that if the Lorentz force, produced by the transport current, acting on vortices is

directed towards the island barnier, the array will behave like a set of coupled one

dimensional arrays and produce only integer giant Shapiro steps. If, however, the Lorentz

force is directed towards any other direction, the array will produce both integer giant and

fractional giant Shapiro steps. A moving vortex model and a pendulum model are used to

describe our experimental and computational results.

We then investigate underdamped Josephson-junction arrays with long-range

interaction. These arrays consist of N horizontal and N vertical superconducting filaments

arranged in two parallel planes separated by an oxide layer; consequently, every wire is

Josephson-coupled to every other wire as nearest- or next-ncarcst-neighbors. Using

Monte-Carlo simulations and a mean field approximation, we show that these novel arrays

undergo a phase transition to a macroscopically phase-coherent state at TC=NEj/2kB in the

zero field case. When a magnetic field, corresponding to a strongly comrmcnsurate number

of flux quanta per unit cell, f=p/q, is present, Tc=NEj/2kB /q for ordered arrays. For

disordered arrays, Tc is defined for four different regimes off. Forf<I/N2, Tc-NEj/2kB.

For lI/N2<f<I/N, Tc=EJ/2kB4, and for 1/N<f<l, Tc rises withf, although the exact form

is presently unknown. Forf>l, Tc asymptotically approaches -O.75EIj"//kB.

Our ac measurements performed on these arrays show that they undergo the above

phase transition at temperatures ranging from 3-5 K. We experimentally find that Tc is

field-sensitive in ordered arrays but field-insensitive in disordered arrays. DC transport

iii
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measurements reveal, among many things, that the arrays are hysteretic despite their

consisting of nonhysteretic junctions. We show that the finite ratio of the wire inductance

to the Josephson inductance limits the effective number of junctions along a given wire to

N eff< <N.
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CHAPTER I

INTRODUCTION

Two-dimensional arrays of Josephson junctions are excellent realizations of a rich

variety of 2-d systems in statistical physics. For example, in zero magnetic field, they

model pure XY magnets; in finite fields, uniformly frustrated XY magnets. Since they can

be fabricated in a controlled way with relative ease, Josephson-junction arrays are often

used to study various problems associated with the phase transitions predicted for 2-d

systems. Such problems include the Kosterlitz-Thouless vortex-unbinding transition, the

effects of frustration on this phase transition, commensurate-incommensurate transitions,

and the effects of disorder.l

This work is both a theoretical and experimental study of arrays of classical

Josephson junctions.2 We examine the arrays not as models of any particular 2-d system;

rather, we examine them solely as arrays of junctions. In particular, we concentrate on

how the overall array geometry affects the collective behavior of the junctions. In one

study, we inject the macroscopic transport current in different directions with respect to the

array unit cell in arrays with short-range interaction, i.e. those arrays whose

superconducting elements are islands which are Josephson-coupled to four or six nearest-

neighbors. As we will show, this change in macroscopic current direction dramatically

affects the phase-locking ability of the junctions when they are rf current-biased. In

another study, we completely alter the physical configuration of our arrays such that they

have long-range interaction, i.e. the arrays have superconducting elements which are now

1See for instance, Kosterlitz and Thouless (1973); Lobb et aL (1983); Lobb (1984); and Mooij (1983b).

2We say classical in a sense that the junction area is large enough for the Josephson energy, E.r=Nc/2e to
be much greater than the charging energy of a single electron transfer, Ec-e 2/2C. Here, ic is the critical
current of a single junction and C is the capacitance of that particular junction. For a thorough study of
arrays in which Ej<Ec, see vander Zant, thesis (1991).
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wires, all of which are Josephson-coupled to each other as nearest- or next-nearest

neighbors. We find that the properties of these arrays are vastly different from those with

short-range interaction.

This thesis is organized as follows. In this chapter, we provide the necessary

foundation and motivation upon which much of this thesis is built. We then divide the

thesis into two major parts with each part consisting of chapters on experiments/results,

numerical analyses, and discussion. In part A, we examine the effect of current direction

on the dynamical properties of arrays with short-range interaction. In part B, we

investigate the ac and dc properties of arrays with long-range interaction. We conclude our

work with a summary and suggestions for possible future work.

1.1 Single Josephson Junctions

1.1.1 The RCSJ model

As shown schematically in Fig. 1.1, a Josephson junction consists of two

superconducting electrodes which are coupled together through a "weak" link. If the weak

link is an insulator, the junction is referred to as SIS (superconductor-insulator-

superconductor); if it is a normal metal, the junction is referred to as SNS (superconductor-

normal-superconductor). Both SNS and SIS junctions have unique properties, one of

which is that a zero-voltage supercurrent given by

i = icsin( - p j ) (1.1.1)

can flow through them [Josephson, 1962]. Here, ic is the maximum supercurrent that can

flow through the junction, and q and (pj are the phases of the Ginzburg-Landau wave

functions describing the two superconducting electrodes, i andj. 4-ij is the magnetic field
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Insulator

Superconductor Superconductor

1bias

Fig. 1. 1. Current-biased SIS Josephson junction.
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contribution to the phase difference and is given by (21r/0 0)fji dt, where A is the

vector potential (arising from an applied magnetic field) and 4o is the superconducting flux

quantum. The strength of the energetic coupling between islands i andj is related to ic by

E = -EJ cos(q0/- ipj - yfij) (1. 1.2)

where Ej-tNcl2e. If the gauge-invariant phase difference, nj=9i-47j-vij, changes with

respect to time, a voltage difference across the junction develops

pi dyij
V = d (1.1.3)

(Josephson, 1962].

Single Josephson junctions have been extensively studied both theoretically and

experimentally, 3 and several models have been developed which accurately predict their

behavior.4 One model in particular which will be used throughout this thesis is the

resisitively-capacitively-shunted-junction (RCSJ) model, developed independently by

Stuart (1968) and McCumber (1968). As shown in Fig. 1.2, this model treats a junction as

a nonlinear Josephson element with critical current, ic, in parallel with a resistor rn

(representing the quasiparticles found in the system), and a capacitor C (reflccting the

junction's paralel plate structure). If we current-bias this circuit as we would do to a

junction, we t.,.ain the equation,

d2 y t dy
2e d + er2

3See for example, Barone and Paen (1982).

4See van Duzer (1981). p. 175 and the references therein.
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n C bias

Fig. 1.2. Schematic diagram of the RCSJ model. The Josephson
junction is modeled as a resistance, rn, and a capacitance, C, in parallel
with the supercurrent channel with critical current, ic. The bias current,
ibids, is driving the junction.
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This equation is completely analogous to the equation of motion of a particle with

mass - C, moving in a cosinusoidal potential and subject to a viscous damping force

which scales as 1I/rn. 5 Using Eq. (1.1.3), we can reduce the variables in Eq. (1.1.4) to

dimensionless units, obtaining

I bias = sn y _ ,_.d 2~ = .y d~y(1.1.5)
ic +7T+P'r

Here, -=2izvcr, where Vc is defined as the junction's characteristic frequency, vc=2 eicrn/h,

and 1c=2eicrn2 C/h is the McCumber parameter. When 3c<l, the junction is considered

overdamped; when 6c>l, the junction is considered underdamped.

1.1.2 I-V characteristics

In SNS junctions, C is so small that Pc-O. Consequently, Eq. (1.1.5) reduces to

the first-order differential equation,

_ =-d+sinr (1.1.6)

To find the average value of voltage V=<(h/2e)dy'dr> for the system, we directly integrate

Eq. (1.1.6) using d=2xnvcdt. If ibias<ic, V=O. If ibias>ic, V = icrn;(ibias/ic)2 -1.

Plotting this,-we find the resulting I-V curve, as shown in Fig. 1.3a, is non-hysteretic.

In SIS junctions, C is not negligible and consequently, the resulting I-V curves are

more complex than those of SNS junctions. As shown in Fig. 1.3b, if Pc>I the overall

I-V curve is hysteretic. At ic, V jumps discontinuously up to a finite voltage,

5This analogy has further been developed into what is called the "tilted-washboard" model. See Tinkham
(1991), p. 8 and van Duzer (1981), p. 179.
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V

/ rn

(a)

/

ic I
V

Zl. rn

2/ (b)
e/

/

/

ir  ic I

Fig. 1.3. Schematic drawings of the I-V curves for two different types of
Josephson junctions. (a) For SNS junctions, the curve is clearly non-
hysteretic. The dashed line represents rn, the normal state resistance of
the junction, and illustrates how the junction I-V curve approaches rn at
higher currents. (b) For SIS junctions, the curve is hysteretic. The
voltage jumps discontinuously to near the value Vg=24/e at ic, plateaus,
and then smoothly increases, approaching the ohmic law, V=irn. The
dashed line, again, represents rn. When i is reduced, V does not drop
back to zero until the retrapping current, r, is reached.
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approximately equal to Vg= 2 A1e=icrn where A is the energy gap. It then smoothly

increases, approaching the ohmic law, V=ibiasrn. If ibias is reduced below ic, V does not

drop back to zero until a retrapping current, ir-4idOX where Q="C , is reached.

1.2 Josephson Junction Arrays with Short-Range Interaction

Josephson-junction arrays with short-range interaction usually consist of

superconducting islands that are arranged in a regular lattice and are coupled to their nearest

neighbors by Josephson junctions (see Fig. 1.4). The Hamiltonian of the system is merely

the sum of the coupling energies of the individual junctions [Eq. (1.1.2)] which make up

the array,

H--Ej cos(p i- oj - Vij) 12)
(i)

where the sum is over nearest-neighbor pairs of islands.6 Here, ijj is constrained by

Vij = 2jr(n+ f) n = 0,±1,±2,... (1.2.2)

where the sum is around a single plaquette in the array and f=Ha2! (defined for a

square-lattice array) is the number of flux quanta per plaquette and a is the lattice constant

of the array. -If no flux is applied and if that generated by the current is negligible, the

upper bound of the array's critical current, Ic, is Nic where N is the number of junctions in

parallel along the direction of the injected current. At T=O and zero field, all the phases are

equal and the array has long-range order. However, when T>O or H>O, this long-range

order is destroyed by two types of excitations, spin waves and vortices of positive (vortex)

6This Hamiltonian is completely analogous to that of XY magnet systems.
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Fig. 1.4. Schematic drawing of a square-lattice array of Josephson
junctions. The black crosses represent the superconducting islands, and
the spaces between the legs of the crosses are the junctions. Each island,
i, has a phase, 'j, associated with it.
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and negative (anti-vortex) circulating supercurrents. The importance of thermally-nucleated

and field-induced vortices will be become apparent in the following sections.

1.2.1 Kosterlitz-Thouless phase transition7

An important aspect of Josephson-junction arrays is that they can undergo a

Kosterlitz-Thouless (K-T) phase transition [Kosterlitz and Thouless, 1973) at a

temperature, TK-. This phase transition occurs when thermally-nucleated vortex-antivortex

pairs become bound in the arrays. To be more specific, when T<T'7, all vortices are

bound to each other as vortex-antivortex pairs. When a small bias current is applied to the

system, the pairs will feel no Lorentz force and hence not drift across the sample since each

pair has no net circulation. Thus, the array will have zero resistance. When T>TKT,

thermal excitations unbind some of the vortex-antivortex pairs, creating single vortices

which are free to move when the bias current is now applied to the array. This movement

contributes to the Linear resistance of the array. The temperature, TT, at which the K-T

transition occurs is determined by

kBTrJT jE; (TT) (1.2.3)

where Et(TpT) is the renormalized coupling energy that includes the effects of fluctuations

from spin waves and vortices [Lobb et al., 1983 and Mooij, 1983b].

Fig. 15 shows the resistive transition of one of our fabricated arrays in zero field.

As can be seen, a sharp decrease in resistance occurs at T=8.75 K, signifying the

superconducting transition of the niobium (Nb) islands. The resistance reaches a plateau

7 This section contains only a brief overview of the K-T transition in arrays. For a more complete
discussion, see for example, Abraham, thesis (1983); Lobb et al. (1983); Mooij (1983b), Forrester, thesis
(1988); and van der Zant thesis (1991).
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Fig. 1.5. The resistive transition of a 1414 x 141 square-lattice array of
Josephson junctions in zero field. The sharp decrease in resistance at
T=8.75 K is due to the Nb islands becoming superconducting. The drop
to zero resistance at T=3.5 K is due to the Kosterlitz-Thouless phase
transition.
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between the temperatures 8 K and 4 K, which is essentially the resistance of the normal

metal between the superconducting islands. It then undergoes another sharp decrease to

zero at T=3.5 K, signalling the K-T transition. Below this temperature, only bound

vortex-antivortex pairs are present in the array. 8

1.2.2 Frustration

We can introduce frustration into the array by applying a transverse magnetic field,

H, to the array. When this is done, field-induced vortices appear in the system and their

motion is constrained by the array geometry and flux quantization. Ideally, when the

average number of flux quanta per unit cell,f=-Ha2 /0o where a is the array-lattice constant

(of a square array), is a ratio of two small integers, i.e. f=p/q, the field-induced vortices

arrange themselves in a spatially periodic lattice which is commenurate with the underlying

array lattice (see Fig. 1.6).

Teitel and Jayaprakash (1983b) have shown that the vortex superlattices for general

fields, f=pfq, consist of q x q unit cells (see Fig. 1.6, again, for an illustration of two

different vortex superlattices). The field-induced vortices arrange themselves in this

superlattice because of their mutually repulsive interactions and their own interaction with

the underlying array lattice. To a vortex, the array lattice is a periodic two-dimensional

energy potential, and as shown in Fig. 1.7, this energy potential looks very much like an

egg-carton [Rzchowski et al., 1990], with the peaks representing the four superconducting

islands, the IAddle points at the actual junctions, and the well at the center cf the four

nearest-neighbor junctions. When the vortex is centered in the well, it is in a stable state;

therefore, the well is a pinning center for the vortex. Vortices can move from one well to

8Actually, nucleation of free vortices occur at all temperatures, TO, due to thefinite size of the fabricated
arrays. However, because the number of free vortices in a finite-sized array is so small (one, on average at
TKT), the resistance caused by them is negligible compared to the effects studied in this research. See
Abraham, thesis (1983) and Kadin et al. (1983).



13

* 9 9 (a).12

90 9k (b) j 11/3

9O
9.. . ..°

Fig. 1.6. Schematic diagram of a square-lattice array of Josephson
junctions in the presence of a commensurate magnetic field, where the
average number of flux quanta per unit array cell,f, is (a) 1/2 and (b) 1/3.
The 'Y's represent the positions of the junctions and the direction of the
applied field is out of the page. The darkened circles with arrows
represent the field-induced vortices, and they are arranged in a superlace
which is commensurate with the underlying array lattice. A unit cell of the
superlattice is shown shaded in each of the diagrams.
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Fig. 1.7. The 2-d periodic vortex potential energy as a function of vortex
position for a representative single unit cell in a square-lattice array
[Rzchowski et al., 1990). The four peaks corresponds to the junction
islands and the saddle points, to the junctions themselves The well
corresponds to the center of the four nearest-neighbor junctions and is the
position where the vortex rests in a unit cell. The energy barrier from the
well to the saddle points on the junctiens is 0.2EJ (Lobb et al., 1983].
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the next only by crossing the low energy barrier of the egg-carton potential, calculated to be

0.2Ej [Lobb et al.,1983].

For all integerf, the vortex superlattice consist of vortices in every array unit cell.

This results in no net field-induced currents through the junction, causing the array to

behave as though it were in zero field. Fields in the range 1/2<f<1 give currents identical

to those for fields below f =(1-j) in the range O<f <1/2, with the exception that all the

current directions are reversed.9 For example, the superlattice forf-2/3 is identical to that

for f=1/3 except that the current flow is in the opposite direction. Because of this

symmetry aboutJf-1/2 in addition to the symmetry betweenf and -f, or betweenfandf+l,

we only need to investigate our arrays in fields where 0<_k-1/2.

The effects of different commensurate magnetic fields on both the array's critical

current, Ic, and the temperature at which the array undergoes a resistive transition, Tc, have

been theoretically and experimentally studied. 10 Fig. 1.8 shows a theoretical calculation of

Ic, as a function off. Values of Tc(f), where kBTc(f)<(h/2e)ic(f), obtained from Monte

Carlo simulations [Teitel and Jayaprakash, 1983b] are also plotted in this figure. Note that

Ic and Tc are both periodic inf.

1.2.3 Collective effects

When a single overdamped Josephson junction is both dc and rf current-biased, the

junction can phase-lock to the rf current at voltages

Vn = n L n = 0,1,2,... (1.2.4)
2e

9f-1/2 is considered to be the fully-frustrated case in arrays because the vortices are most closely packed.

I0 See for instance, Teitel and Jayaprakash (1983a); Shih and Stroud (1983 and 1985); and Brown and
Garland (1986).
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Fig. 1.8. Theoretical calculation of the zero-temperature critical current,
Ic(), for different commensurate magnetic fields [Teitel and Jayaprakash,
1983b]. The zero-current critical temperature, Tc(f), obtained from Monte
Carlo simulations for fields,f=O, 1/2, 1/3, and 1/4, is also plotted [Teitel
and Jayaprakash, 1983b]. The dashed line is a guide to the eye only.
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where v is the rf frequency [Shapiro, 1963]. When this phase-locking occurs, we say that

the junction is on its nth Shapiro step. Josephson junctions arranged in an N x M square-

lattice array (where N is the number of junctions in the direction of the current flow) can

also phase-lock with the rf current at voltages

n = n[v n = 0,1,2... (1.2.5)

[Clark, 1973 and Leeman et al., 1984]. When this collective effect occurs, i.e. when all

the junctions are simultaneously on the nth Shapiro step, we say that the array is on its nth

giant Shapiro step (see Fig. 1.9). In the presence of a transverse magnetic field which

corresponds to a strongly commensurate number of flux quanta per plaquette, f=p/q, the

array can again phase-lock to the rf current but at voltages

vn = n n = 0,1,2,.... and q = 1,2,3,... (1.2.6)

[Benz et al., 1990; Free et al., 1990; K. H. Lee et al.; 1990, and H. C. Lee et al., 1990].

For q>l, these particular steps are namedfractional giant Shapiro steps (again, see Fig.

1.9) and have been attributed to the driven motion (caused by a current-induced Lorentz

force) of a 5uperlattice offield-induced vortices commensurate with the underlivng array

lattice.

The collective effects in rf current-biased arrays we have just introduced all occur

when the macroscopic transport current is injected along the [10] direction of the array unit

cell. The Lorentz force, caused by this current, directs the field-induced vortices across the

low energy barrier of the array's egg-carton potential. The synchronized motion of these

vortices with an applied rf current is what allows for fractional giant Shapiro steps to occur

in the array. Using an analytical approach, Halsey (1990) has argued that arrays in which
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at fractional values are fractional giant Shapiro steps (Free et al., 1990.
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Josephson
junction

Superconducting
Wire

Fig. 1.10. 4 x 4 array with long-range interaction. Each black line
represents a superconducting wire. Note that unlike the conventional
arrays with short-range interaction (Fig. 1.4), all the wires in this array
are Josephson-coupled together as nearest- or next-nearest neighbors.
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current flows along the [11] direction of the array unit cell should also exhibit fractional

giant Shapiro steps. Since the Lorentz force in these arrays directs the vortices against the

high energy barrier of the egg-carton potential, and since the vortices, themselves, cannot

cross over this barrier, two questions are immediately raised. What exactly is the vortex-

superlattice motion and how does it allow fractional giant Shapiro steps to occur in the

arrays? These intriguing questions are the motivation behind our work in part A.

1.3 Josephson-Junction Arrays with Long-Range Interaction

Although they have been theoretically studied in the disordered limit by Vinokur et

al. (1987), arrays with long-range interaction have not been physically realized, and.

therefore experimentally studied, until now. In part B of this thesis, we will examine these

novel arrays which consist entirely of N horizontal and N vertical superconducting

filaments arranged in two parallel planes separated by an oxide layer. This configuration

results in every wire being Josephson-coupled to every other wire in the array as nearest-

or next-nearest neighbors (see Fig. 1.10). In the disordered limit, where every wire is

randomly spaced from its neighbors, arrays with long-range interaction are predicted to

behave like a spin glass, undergoing a phase transition to a macroscopically phase-coherent

state at a temperature, Tc (Vinokur et al., 1987). Experimentally, we find that both the

ordered and disordered arrays produce a strong diamagnetic response to an ac magnetic

field at Tc, indicating that they have undergone the transition to their phase-coherent state.

Our additional findings, reported in part B, show that these arrays are far less simple than

early theoretical work [Vinokur et al., 1987 and Sohn et al., 1992b] had suggested.



PART A: THE EFFECTS OF CURRENT DIRECTION

ON THE DYNAMICAL PROPERTIES OF

JOSEPHSON-JUNCTION ARRAYS

CHAPTER II

EXPERIMENTAL DETAILS ON SNS ARRAYS

2.1 Introduction

We first focus our attention to our discovery that changing the direction of the

applied macroscopic current with respect to the array unit ceU can greatly affect the

dynamical properties of proximity-effect Josephson-junction arrays [Sohn et al., 1991 and

1992a]. We have found that square-lattice arrays in which the transport current is injected

along the [11] direction of the array (Fig. 2.1 c) exhibit only integer giant and not fractional

giant Shapiro steps. This surprising result is in stark contrast to the usual case in which the

transport current is injected along the [10] direction of the array (Fig. 2.1a). Arrays of this

sort exhibit both integer giant and fractional giant Shapiro steps. As will be discussed in

Chapter V, we attribute the difference between the two cases to the fact that all the junctions

in the [ 11]-oriented square-lattice array are directly injected with equal components of the

macroscopic current (as is not the case for the [10]-oriented square-lattice array). This

results in the entire array behaving like a set of coupled one-dimensional arrays.

Since we believed that the suppression of fractional giant Shapiro steps in square-

lattice arrays occurs gradually over a range of current angles with respect to the [10]

orientation, we have also measured square-lattice arrays in which the macroscopic current

21





22

((a)

xxx
X X x (c)

X )X

Fig. 2.1. Sections of the (a) [10], (b) 150, and (c) [11] square-lattice
arrays. The black crosses are Nb islands and the direction of the external
current, iext, is as shown.
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is injected at 150 with respect to the [10] direction (Fig. 2.1b). Our measurements show

that 150 arrays also exhibit fractional giant Shapiro steps, albeit small ones.

In addition to the square-lattice arrays, we have also studied triangular-lattice

arrays, arrays in which each superconducting island is surrounded by six nearest neighbors

in a close-packed geometry. These particular arrays are of special interest since they are a

better model than the square-lattice geometry for naturally occurring grains in samples of

granular superconductor. By changing the ditction of the applied macroscopic current

with respect to the array we were again able to affect the presence or absence of the

fractional giant Shapiro steps in the array. In particular, we found that arrays in which the

current is injected in the [10T] direction (Fig. 2.2a) exhibit both integer giant and fractional

giant Shapiro steps. These arrays, like the [10]-oriented square-lattice ones, have junctions

which are perpendicular to the transport current and hence do not carry any component of

the external current. Arrays in which the current is injected in the (2T1) direction (Fig.

2.2b) exhibit only integer giant Shapiro steps. Al the junctions in these arrays, like those

of the [I I ]-oriented square-lattice ones, are directly injected with the transport current.

Based upon our results of both the square- and triangular-lattice arrays, we argue that if the

Lorentz force, produced by the transport curTent, is directed towards the island barrier, then

the array will behave like a set of coupled one-dimensional arrays and produce only integer

giant Shapiro steps. If, however, the Lorentz force is directed towards any other direction,

the array will produce both integer giant and fractional giant Shapiro steps.

In this chapter, we describe our method of fabricating the different geometric

proximity-effect arrays we have just mentioned and our means of measuring them. We

then follow with a presentation of our experimental results in Chapter III. To further

understand these results, we have performed several different types of numerical

simulations of the arrays we have experimentally studied. We describe these simulations

and present their results in Chapter IV. In Chapter V, we discuss both our experimental

and numerical results and draw our conclusions.
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Fig. 2.2. Sectons of the (a) [10T] and (b) [2TT] triangular-lattce arrays.
The black asterisks are Nb islands and the direction of the external
current, iext, is as shown.
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2.2 Fabrication

2.2.1 History

The very first proximity-effect arrays produced by this group were made by

evaporating lead (Pb) through a fine metal mesh on top of a thin copper (Cu) film

[Abraham, 1983]. The resulting SNS arrays were large (lattice constant, 75 jim) and the

islands were square-shaped. Although much important work resulted from studying these

arrays, including the identification of the Kosterlitz-Thouless phase transition in proximity-

effect arrays, it soon became apparent that alternative methods for fabricating arrays were

necessary since array nonuniformity and irreproducibiliry were ever-present problems in

the fabricaron process.

With recent advances in microfabrication technology, particularly in the area of

photolithography, these particular obstacles were soon overcome, and in addition, the

group gained greater flexibility in designing the microscopic geometry of the arrays. Arrays

of cross-shaped Pb islands (lattice constant, 10 jim) on Cu film soon became the standard

design for this group. Other geometries, including Sierpinski gaskets and arrays with

deliberate pcsitional disorder, were also designed and fabricated [Forrester, 1988]. Further

improvements in SNS array fabrication included switching the superconducting material

from Pb to niobium (Nb) [Benz, 1990]. The reasons for switching the superconducting

material are threefold. 1 First, the refractory Nb is more robust than Pb and is recyclable.

Second, Nb has a high superconducting transition temperature (9.2 K), therefore allowing

for much higher and more easily accessible, Kosterlitz-Thouless transition temperatures.

Third, the fabrication techniques associated with using Nb allow for greater flexibility,

uniformity and control of the junction characteristics.

ISee Benz, thesis (1991) for specific details.
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2.2.2 Array fabrication

The actual fabrication of two-dimensional square- and triangular-lattice SNS arrays

is a multi-step process.2 To create the Nb-Cu bilayer on which we will pattern the array,

we first need to prepare a photoresist trilayer on a previously cleaned 1" x 1" x 0.025"

polished sapphire substrate. The trilayer consists of an exposed layer of photoresist, a thin

layer of aluminum (Al), and an additional layer of unexposed photoresist. We then expose

the substrate to the "bilayer" mask using a 400 nm wavelength ultra-violet light from a Karl

Suss (model MJB3) contact mask aligner.3 This mask defines not only the macroscopic

geometry (10 mm x 1 mm and 10 mm x 3 mm) of the arrays but also the current and

voltage pads. The sample is then developed and aluminum-etched to create an undercut

(see Figure 2.3). The undercut is necessary to ensure nicely defined edges of the deposited

metal bilayer.

After completing the above photolithography steps, we mount the sample onto a

substrate holder in a thermal evaporator. We initially clean the substrate's surface with an

rf argon (Ar) plasma in order to remove any water (H20) molecules that may have adhered

to the surface and which would have prevented good adhesion of the Cu to the substrate's

surface. Following the surface cleaning, we evaporate 0.35 pm of high purity Cu

(99.999%) onto the substrate.

After thermal evaporation, we remove the substrate from the evaporator and mount

it on a 50OF water-cooled substrate holder in a magnetron sputtering chamber. Since the Cu

evaporation and Nb sputtering are not done in situ, it is necessary to clean the surface of the

Cu using an rf Ar plasma. The Ar plasma removes the copper oxide (CuO2) that formed

2 For a detailed description of the fabrication process; see Appendix I.

3 Bilayer masks were made using photolithography; se Appendix IV.
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Fig. 2.3. Outline of the Nb-Cu bilayer fabrication process.



28

during the sample's exposure to air, thus ensuring a good interface between the Cu and the

Nb. Approximately 50 nm of the CuO2-Cu layer is removed using the rf Ar plasma and

0.2 .m of Nb (Nb purity, 99.9975%) is immediately (within 5 sec) sputtered onto the Cu

surface. A simple liftoff of the photoresist using acetone, a photoresist solvent, is then

done, leaving behind only the Cu-Nb bilayer on the substrate (see Fig. 2.3).

To pattern the junctions, we spin inverting photoresist (Hoechst AZ-5214E) onto

the bilayer substrate. 4 We use inverting photoresist, rather than the standard photoresist

(Shipley 1400-27), because it is an ideal photoresist with which to perform reactive-ion

etching. Arrays of junctions whose macroscopic current is injected along the [10] and [11]

direction of the array unit cell are patterned merely by appropriately rotating the array mask5

with respect to the current pads and then exposing to UV light. This method is also used to

pattern the 15° array. Once developed, the islands are formed using SF6 reactive-ion-

etching. We use SF6 because the fluorine ions are selective only to Nb and not to Cu.

Once the etching is completed, the photoresist is removed by placing the sample in a heated

solution of photoresist stripper (see Fig. 2.4). The lattice constant for the square-lattice

arrays is 10 pm and the junction length is 2 pai (see Fig. 2.5). The completed [10]

oriented arrays contain 1000 x 100 junctions, the [11] arrays 1414 x 141, and the 150

array, 967 x 97. A SEM picture of the [10] oriented array is shown in Fig. 2.6.

The triangular-lattice arrays we measured are similarly made. Nb six-sided asterisk

islands, whose lattice constant is 14 ptm and junction length 2 gtm (see Fig. 2.7),6 are

patterned (and again, formed using SF 6 reactive-ion-etching) such that the macroscopic

4With inverting photoresist, only the unexposed areas will develop.

5Array masks were made by Advanced Reproductions, Andover MA.

61t would have been preferable to use a lattice constant of 10 pm in order to better compare the results of
the measured aiangular-lattice arrays with those of the square-lattice ones. However, had we in fact used
this lattice constant and kept the junction length to 2 pm, the asterisk islands would be much too compact
for us to easily fabricate the arrays. Hence, this is the reason we chose a lattice constant of 14 Pm for our
triangular-lamice arrays.
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Fig. 2.6. SEM picture of an actual square-lattice array. The lattice
constant is 10 p.m and the junction length is 2 gtm.
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current is injected along the [101] and [211] direction of the array unit cell. Again, the

differently oriented arrays are patterned by simply changing the orientation of the mask

with respect to the current injection pads and then exposing to UV light. While the [101]

triangular-lattice array contains 722 x 188 junctions, the [211] array contains 625 x 217

junctions. A SEM picture of the [101] oriented array is shown in Fig. 2.8.

All of the Josephson-junction arrays we fabricated have normal metal pads. The

reason for this is that we wanted to avoid field-screening effects from large

superconducting areas and thus improve the uniformity of the applied magnetic field in the

array. The current pads are chosen to be normal also because we wanted the array to be

evenly injected with the bias current. The excess islands on the current pads (as shown in

Fig. 2.9) on some of the arrays are unimportant since the bias current still has time to

spread itself uniformly before actually reaching the N x M array.

2.3 Measurement Apparatus

The measurement rig used to make the four-point measurements on the SNS arrays

is one which was originally designed and built by D. Abraham (1983) and modified by M.

Forrester (1988). Since a detailed description and diagram of the rig can be found in the

thesis of Abraham (1983), we will only review its main features here. The rig has a

temperature-controlled Cu substrate block inside a Pb-free "Naval Brass" vacuum can. It

has been modified over the years to reduce the number of solder joints near the sample

block, thus minimizing the field non-uniformity caused by the superconducting solder. On

the outside of the vacuum can is a 10 cm long, 5.5 cm diameter copper solenoid. This

solenoid can produce a uniform magnetic field (-13 mA/Gauss) perpendicular to the sample

inside. The current and voltage leads have been rewired by us and consist of twisted pairs

of 36 gauge copper wire. The wires are wound with many turns onto two separate copper

block stages at the bottom of the rig in order to improve the heat sinking of the leads and to
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Fig. 2.8. SEM photograph of a triangular-lattice array. The lattice
constant is 14 gtm and the junction length is 2 .m. The white
nonconductive "spots" are of unknown origin.
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Fig. 2.9. Four-point probe measurement circuit for an arry sample. In
this case, the sample is a [1 11-oriented square-lattice array.
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reduce the effects of thermal emf s on the sample. The leads are connected to the sample's

voltage and current pads using pressed indium-dot contacts. The four-point probe

measurement circuit we used is shown in Fig. 2.9. With this circuit, we are able to

perform several types of measurements, including current vs. voltage, dynamic resistance

(dV/d) vs. voltage, and dynamic resistance vs. perpendicular magnetic field curves.

Once the substrate is mounted onto the Cu block and the appropriate leads are

connected to the sample, the vacuum can is slid over the sample and sealed with an indium

o-ring. The rig is then placed in a 1-metal shielded 4He cryostat. The g-metal shields the

rig from external magnetic fields, reducing them to -0.1 mGauss [Benz, 1990]. The

vacuum can is evacuated and a small amount of He exchange gas is placed into the can so

that the sample block can be cooled by the liquid-He bath. A regulatable pumping system

is used to control the temperature of the liquid-He bath. The lowest temperature which can

be attained with this system is 1.25 K. The temperature of the Cu sample block is

controlled with a Lake Shore Cryotronics Temperature Controller (model DRC-91C). A

heating resistor can be used to heat the sample well above the temperature of the liquid-He

bath, and a calibrated germanium thermometry resistor (Cryocal #4033, 10870 at 4.25 K),

also mounted on the sample block, is used to measure the temperature.

A PAR 124A lock-in amplifier, with a PAR 116 preamplifier, is used for all of our

measurements. In addition, a 1:100 transformer at the input is also included in order to

improve the impedance match from the low-resistance of the array. The rms amplitude of

the ac current through the sample is chosen to be at least 100 times smaller than the

measured criftical current of the array. Under these conditions, measurements with a

sensitivity better than 1 nV could be obtained with lock-in time constants less than 1 sec

[Benz, 1990]. An HP 8656B signal generator (frequency range of 0.1-990 MHz) is used

for the rf source and a nanovoltmeter, Keithley Instruments model 148, for measuring the

dc voltage (typically, 0.1-1.0 jtV) across the array. Ground loops are broken by using a

1:1 transformer on the lock-in modulation signal output and .0.1 pF blocking capacitors on
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the rf signal generator output. A homemade battery-powered supply is used as the dc

current source (maximum current = 100 mA) simply because of its low noise

characteristics. This supply can be either hand or motor swept. To minimize electrical

noise generation, all data are initially plotted on an HP 7045B analog XY recorder and then

digitized for computer analysis.

2.4 Experiment

There is only a rather narrow temperature range in which we can optimally perform

our measurements, for the following reasons.7 Because we want to avoid the effects of

thermally excited vortices which are presen, at temperatures near or above the Kosterlitz-

Thouless transition temperature, TK', we make our measurements well below the TTia of

our samples. However, we cannot measure our samples at too low a temperature because

the critical current, ic(T), of a single junction in the array is an exponential function of

temperature [De Gennes, 1964],

", /
ic-(T) = c )(0 ) 1  )exp d

,:.'here TCo is the superconductor transition tcmperature, ,, is the coherence length of the

normal metal barrier and d is the effective separation between the islands. If ic(T) is large,

the critical current of the array, Ic=Mic, where M is the number of junctions across the

array, will be much larger;, thus, the applied rf current drive will be too weak to have any

effect on the array. At low temperatures, where ic(T) becomes larger, shielding effects,

caused by large circulating currents around the perimeter of the array, and geometrical

inductance effects can both dominate our measurements.

7Further details and explanations can be found in Benz, thesis (1990).
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Hence, we see that we are very much limited to a set temperature range at which we

can measure our arrays. In the folG, ing chapter, we will describe the results of our

measurements.



CHAPTER III

SNS ARRAYS: EXPERIMENTAL RESULTS

3.1 Introduction

When a radio frequency (rf) current, irsin(2nv), is applied to an N x M array of

superconducting-normal-superconducting (SNS) Josephson junctions, giant Shapiro steps

occur at dc voltages

Vn= n=,1,2,...

[Clark, 1973 and Leeman et al., 1984]. Here N is the number of junctions in series along

the current direction. When a perpendicular magnetic field corresponding to a strongly

commensurate number of flux quanta per unit cell, f=p/q (where p and q are small

integers), is also applied to the system, fractional giant Shapiro steps occur at voltages

vn = n Nv n = 0,1,2 .... and q = 1,2,3,... (3.1.2)r N/zv 11

These steps are attributed to the driven motion, in a direction perpendicular to the

macroscopic- current, of a superlattice of field-induced vortices commensurate with the

underlying array lattice [Benz et al., 1990; Free et al., 19 0; K. H. Lee et al., 1990; and

H. C. Lee et al., 1990]. The motion of current-ir.."uced vortices is thought to be

responsible for subharmonic steps occurring at voltages

39
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Vn = L-l n =-0,1,2,... and m- 1,2,3,... (3.1.3)

Vlm q2et

in these arrays [K. H. Lee et al., 1991].

In this chapter, we will present the results of our experimental investigation of the

effect of changing the macroscopic current direction with respect to the array unit cell on rf

and dc current-biased overdamped Josephson-junction arrays. In particular, we focus on

our discovery of the partial or complete suppression of fractional and subharmomc giant

Shapiro steps in both square- and triangular-lattice arrays when the macroscopic transport

current flows along certain directions with respect to the array unit cell.1

3.2 Experimental Results

3.2.1 Magnetoresistance

As was stated previously, we fabricated and measured square- and triangular-lattice

arrays whose macroscopic current flowed in various orientations with respect to the array.

We first characterized these different arrays in terms of their magnetoresistance. Some of

our data on the magnetoresistance of square- and triangular-lattice arrays are shown in

Figures 3.1a and b. As had been found earlier through experiments by Brown and Garland

(1986) and through simulations by Shih and Stroud (1984), the magnetoresistances of the

two types of array lattices differ greatly. While the strongest resistance minimum (apart

fromf--integer) for both the square- and triangular-lattice arrays occurs atff-1/2, the next

strongest minimum for the square-lattice array is atfff-I/3; for the triangular lattice, it is at

f=1/4. Such resistance minima indicate pinning of the vortex superlattice. We have found

IMost of the results presented in this chapter have been published in Sohn at al., 1991 and 1992a.
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Fig. 3.1. Dynamic resistance versus number of flux quanta, fper unit
cell for the (a) square- and (b) triangular-lattice arrays. Data were taken at
(a) T=2.5 1 K and (b) T=3.97 K. Both array lattices show strongest
vortex pinning at f=1/2; however, the next strongest pinning for the
square-lattice array is atf=1/3 and 2/3, for the triangular lattice,f=1/4 and
3/4.
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that although the main features of the low-current magnetoresistance are dependent on the

fundamental lattice of the array, these features are entirely independent of the orientation of

the array with respect to the transport current.2

3.2.2 Giant Shapiro steps

A. Square-lattice arrays

For the [10]-oriented square-lattice arrays in zero field, we see integer giant Shapiro

steps which are not flat, but show up as sharp minima in the differential resistance, as

shown in Fig. 3.2, at voltages which agree with Eq. (3.1.1). The steps are not flat because

of thermal fluctuations, noise, and inhomogeneities in the array. 3 As expected, in the

presence of a strongly commensurate field, i.e. f-l/2 or 1/3, both integer giant and

fractional giant Shapiro steps are observable at voltages agreeing with Eqs. (3.1.1) and

(3.1.2), respectively. In addition, weak subharmonic steps at voltages corresponding to

Eq. (3.1.3), where m=2 or 3, are present in the [101-oriented arrays at f=0, 1/2, and 1/3.

These subharmonic steps begin to disappear at low rf frequencies (f2=NhvI2ecR < 0.3,

where IC is the critical current and R is the nonrmal-state resistance of the entire array).

As stated previously in the introduction of this chapter, subharmonic steps are

thought to be a result of the motion of current-induced vortices [Benz, 1990;

H. C. Lee et al., 1991; and Jost and Dominguts, 1992]. Lee et al. (1991) were the first to

experimentally determine that the dc bias current produces an inhomogeneous self-field

along the edges of the array. This self-field produces vortices whose subsequent motion

throughout the array lattice produces the subharmonic steps. To test whether or not this

2Simlarities in maneoesistamce of [10]- and [11)-oriented square-antice arrays of underdamped Josephson
junctions have also been reported by van der Zant et aL (1990).

3This is the main reason we take dV/d/ vs. V measurements of our arrays. A V vs. I measurement would
show steps which are simply too rounded to make any quantitative statements.
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Fig. 3.2. Dynamic resistance vs. normalized voltage in the presence of
perpendicular magnetic fields corresponding tofrO, 1/3, and 1/2 for the
[10]-oriented square-lattice array. Data were taken at T=1.39 K where
Ic=0.26 mA, rf frequency v=l.5 MHz (12=Nhv/2eIcR=0.45). The rf
drive currnt for f=O was 2/3 as large as forf=l/2 and 1/3.
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was the case for our samples, we followed Lee et al.'s work (1991) and placed a thin

normal metal (Cu) film directly over our array and ran a current through the film in a

direction directly opposite to the dc bias current. The sheet current produced entirely

eliminated the perpendicular component of the self-field Consequently, no vortices were

produced and correspondingly, the subharmonic steps were suppressed [Rzchowsld and

Sohn, 1991]. This work further supports the belief that edge nucleation of vortices

induced by the self-field of the array's dc bias current leads to subharmonic Shapiro steps.

In the [1 1]-oriented arrays (see Figure 3.3), we also see integer giant Shapiro steps

whose voltages correspond to Eq. (3.1.1). More importantly, however, we do not observe

fractional giant or subharmonic Shapiro steps at any transverse field strength (f--0, 0.07,

0.18, 0.29, 0.33, 0.50 were tried) in these arrays, apart from a small feature seen at the

half-integer position. We tentatively attribute this small feature to the inflection point in the

I-V curve midway between strong integer steps. These features often occur in single

junctions as well, and in arrays, can occur at voltages corresponding to subharmonic steps.

Changes in the rf frequency, such that £2 ranges from 0.18 to 0.73, have no effect on this

complete suppression of fractional steps. Measurements made at different rf amplitudes

and at different temperatures also consistently fail to show fractional giant or subharmonic

Shapiro steps in [11]-oriented arrays.4

Because the surprising suppression of fractional giant Shapiro steps occurred for an

extreme change in current direction, we also studied the dynamical properties of arrays in

which the current was injected at only 15 degrees with respect to the [10] direction. Both

integer and fiictional giant Shapiro steps appear in this type of an array, but the fractional

4We note that our results we not in agreement with the theoretical predictions of Halsey (1990). Based on
the assumption of low rf frequencies, the supercurents flowing in a staircase pattern, and the array being
voltage-biased, Halsey predicts that fractional giant and subbarmonic Shapiro steps will be seen in [Il]-
oriented arrays. In addition, he predicts that subharmonic steps will also be observed in these arrays even
when no field is present. Our simulations, which will be discussed in Chapter IV, confirm Halsey's
assumption of staircase currents at low rf frequencies. However, our experimental, numerical, and analytical
results--all of which are based on arrays which are current-biased--do not produce fractional or sub-armonic
steps. Halsey (1991) has suggested that this unanticipated difference might be due to the different bias
choices in our two approaches.
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Fig. 3.3. Dynamic resistance vs. normalized voltage in the presence of
perpendicular magnetic fields corrsponding tof=0, 1/3, and 1/2 for the
(11J-oriented square-lattice array. Data were taken at T=2.10 K where

Ic=0 .7 8 mA, rf frequency v=4.0 MHz (2=-Nhv/2eIcR--0.58). The rf
amplitude was equal for all curves.
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step, nlq=1/2, is quite weak, as determined by its minimum dynamic resistance; fractional

giant Shapiro steps of n/q > 3/2 are nearly nonexistent (see Figure 3.4). This is in striking

contrast to the [10]-oriented arrays, in which we observe strong fractional giant Shapiro

steps for n/q > 3/2. Subliarmonic steps, which are so prevalent in our [10]-oriented arrays

at rf frequencies S > 3, also appeared in the 15 * array, albeit weakly, for 0.18 < 12 < 1.24.

B. Triangular-lattice arrays

The previous work on arrays in this group has been done mostly on square-lattice

arrays. In this section, we present the results of our work on triangular-lattice arrays-

arrays in which each superconducting island is surrounded by six nearest neighbors in a

closed-packed geometry. Triangular-lattice arrays are of special interest since they are a

better model than the square-lattice geometry for naturally occurring grains in samples of

granular superconductor. By changing the direction of the applied macroscopic current

with respect to the array, we found that we were again able to affect the presence or

absence of the fractional giant Shapiro steps in the array.

The general dynamical properties of the triangular-lattice arrays have many parallels

to those of the square-lattice ones. In Figure 3.5, we see that, as in the case of the [10)-

oriented square-lattice arrays, the [101]-oriented triangular-lattice arrays exhibit both

integer and fractional giant Shapiro steps5 at voltages corresponding to Eq. (3.1.1) and

(3.1.2). In Figure 3.6, we see that the [211]-oriented triangular-lattice arrays, like the

[ 11 )-oriented -square-lattice arrays, show only integer giant Shapiro steps. One remarkable

feature which is unique to the [21 T]-oriented triangular-lattice arrays is that the even

integer steps are much stronger than the odd ones. We have found that this unusual

behavior is both field- and frequency-independent.

5H. C. Lee et al. (1990) have reported seeing integer and fractional giant Shapiro steps in wiangular.lattice
Pb-Au Josephson-junction arrays. The orientation of the arrays studied was [10T] (Newrock, 1991).
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Fig. 3.4. Dynamic resistance versus normalized voltage for the 150
square-lattice array in the presence of perpendicular magnetic fields
corresponding to f=O, 1/2, and 1/3. Dama were taken at T=2.52 K and if
frequency v-3.5 Mhz (0--Nhv/2edcR=O.4l).
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Fig. 3.5. Dynamic resistance versus normalized voltage for the [10T]-
oriented triangular-lattice array in the presence of perpendicular magnetic
fields corresponding to f=O, 1/2, 1/3, and 1/4. Data were taken at T=3.40
K and rf frequency -0.90 Mhz (S2=Nhv/2eJcR=0.33).
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Fig. 3.6. Dynamic resistance versus normalized voltage for the [211]
triangular-lattice array in the presence of perpendicular magnetic fields
corresponding to f=O, 1/2, 1/3, and 1/4. Data were taken at T=3.61 K
and rf frequency v-0.7 Mhz (S2-Nhv2ecR=0.96). Integer giant Shapiro

steps in the [21 1] case alternate in strength, the even steps being stronger
than the odd ones.
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Table 3.1. Strengths of fractional giant Shapiro steps produced by various
geometries of Josephson-junction arrays. The black crosses and asterisks are Nb
islands. The applied macroscopic current flows horizontally and "geometry"
indicates the direction of the current with respect to the array unit cell. All array
types showed integer giant Shapiro steps.

Array Geometry Fractional Steps

+=+4 = [10] Strong

150 Weak
#44

xx
x K K [11] Absentxx

[101] Weak

[211] Absent
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3.3 Summary of Results

A summary of our results can be found in Table 3.1. Briefly, we have found that

the [10]-oriented and 150 square- and [10 l]-oriented riangular-lattice arrays produce both

integer and fractional giant Shapiro steps. The [11]-oriented square- and [211]-oriented

triangular-lattice arrays, however, produce only integer giant Shapiro steps.



CHAPTER IV

SNS ARRAYS: NUMERICAL SIMULATIONS

4.1 Introduction

The RCSJ model [W. Stewart, 1968 and D.McCumber, 1968] is often used to

describe rf current-biased single Josephson junctions [P. J. Russer, 1972]. As stated in

Chapter I, this model assumes that a Josephson junction is a parallel combination of a

resistor ra, a capacitor C, and a nonlinear Josephson element with critical current ic. When

current biased, this circuit can be described by the following equation of motion,

hC d27+ h dy csny=ic+i

2e dt2  2ern dr cfsin(ox) (4.1.1)

where 7- Vj- gi- Vij is the gauge-invariant phase difference between the two

superconducting islands, i and j, that make up the junction, Vij = di , withA

equal to the vector potential, idc and ifare the applied dc and rf current per junction, and ic
is the critical current of the junction. In the overdamped limit 'c -(2eicr2C/ )

i ', 1h)<< 1 ,Eq.

(4.1.1) reduces to a first-order differential equation.

We have performed several types of numerical simulations--all based on the RCSJ

model--of the various SNS arrays we have experimentally studied. In Sec. 4.2, we

present the results of our large scale simulations of an N x N [11J-oriented square-lattice

array. 1 These rather involved simulations consist of solving -N 2 coupled, nonlinear,

first-order differential equations, which are derived from applying current conservation

1Most of the results presented in this chapter have been published in Sohn et al., 1991 and 1992a.
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laws to each node of the array. In addition to these large scale simulations, we have also

simulated the basic unit cells of both square- and uiangular-lattice arrays. As will be

discussed in Sec. 4.3, these simulations, although simpler and therefore far less time

consuming than the large-scale simulations, provide much detailed information on the

dynamics of SNS arrays.

4.2 Large Scale Simulations of [111-Oriented Square-Lattice Arrays

4.2.1 Algorithm

The numerical simulations of [11]-oriented square-lattice arrays we have performed

are identical to those performed by Free et al. (1990) with the obvious exception that the

zracroscopic current in the array flows in the [11], and not the [10], direction. Using the

RCSJ model described in Section 4.1, we can easily show that the current, iij, flowing

through an individual junction in an N x N array is given by

Vij-
iij = ic sin Tij + J  (4.2.1)rn

where rn is, again, the junction resistance, vij, the voltage drop across the junction, and Xj

is the gauge-invariant phase difference across the junction,

YU = 9i j,)A . dl" (4.2.2)

For our purposes, we choose the Landau gauge to be A=Hx,. Using the Josephson

voltage relation [Josephson, 1962], we can relate vij to xj with he following,
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h dyij (4.2.3)
vJ=2e dt

Current conservation at each array node places the constraint

T i =i x 1 (4.2.4)
J

As in Free et al.'s simulations (1991), in our simulations, im-t = 0 except at the

boundaries, where i t = +[i&c + if sin(2zrvt)]; (+) indicates current being injected and

(-) indicates current being extracted (see Figure 4.1). We choose periodic boundaries

perpendicular to the transport current direction in order to avoid boundary effects arising

from simulating small-sized arrays [Free et al., 1990 and Chung et al., 1990].

In order to solve the coupled first-order differential equations, Eqs. (4.2.1)-(4.2.4),

we employ a fourth-order Runge-Kutta method with uniform time steps. Each array node

is assigned an initial phase which will be used to integrate the equations. 2 I-V curves are

calculated by ramping the current from zero to some current, Idc. The individual phases

are allowed to relax 400 rf periods before time averaging the voltage for an additional 400

rf periods. Because the amount of cpu time needed to solve the coupled first-order

equations is enormous, we limit the size of the array to N x N where N=2, 4, 6, 8, and 16.

All simulations were performed on a Sun 4, a Sun Sparc station SLC, and a Convex

machine.3

2Initially, we chose qf=0. Ideally, however, one would like to start with the zero-temperature ground-state
configuaton in order to avoid boundary-related metastable states due to finite array size.

3The use of a SUN 4 was provided by the Robotics Laborawry, Harvard University and the use of a Convex
machine, by the Laboratory for Computational Physics at the Naval Research Laboratory, Washington,
D.C.
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Fig. 4. 1. Schematic drawing of a simulated 6 x 6 junction [I l]-oriented
square-lattice array with periodic boundaries in the direction perpendicular
to the applied current, iexr. Nodes A, B, C are the same for either side of
the array in order to complete the periodic boundary conditions we
imposed on our simulations.
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4.2.2 The results

For a wide range of rf frequencies (0.1 < 2 < 1.5) and amplitudes, we found that

the resulting I-V curves for the 2 x 2 , 4 x 4, 8 x 8 , and 16 x 16 [113-oriented arrays at

f=1/2 and for the 6 x 6 arrays atf=1/3 show only giant Shapiro steps whose widths varied

with if amplitude (see Figure 4.2). Nowhere do we see fractional giant or subharmonic

Shapiro steps in any of the computed curves.

When we study the time evolution of the phases and the supercurrents of the

simulated 8 x 8 or 4 x 4 junction [11]-oriented square lattice array on the first giant Shapiro

step at low rf frequencies (i.e. S2 < 0.6) and atf=1/2, we find that the supercurrents flow in

a sequence of staircase patterns throughout an rf cycle (see Figure 4.3). At the beginning

of an rf cycle, when ir.sinaw=O, the phases in the array resemble thef=1/2 ground state,

i.e. staircase currents of alternating sign form a checkerboard pattern of clockwise and

counterclockwise vortices within the array (see Fig. 4.3a). Motion of this superlattice of

vortices was successfully used to describe phase coherence in [10-oriented arrays [Free et

al., 1990; Benz et al., 1990; and K. H. Lee et al., 1990]. In the [10] case, the Lorentz

force drives the vortices straight through the weak links between the Nb islands. In

contrast, in the [ 11] case, the Lorentz force drives the vortices toward the high energy

barrier of the Nb islands. One might imagine that half of the vortices move around an

island on one side, and half on the other side. If incoherent, such a motion of the vortex

lattice across the array might be thought to explain the absence of fractional giant and

subharmonic steps in diagonal arrays. In our simulations, however, the actual vortex

motion does not follow this scenario. We found that as the rf drive advances in its cycle,

only staircases of supercurrents flowing in the same direction as the drive current exist in

the array, and the aformentioned vortices completely disappear (see Figure 4.3b). At the

peak of the if drive cycle, at which time the transport current is carried largely as normal

current with an accompanying pulse of voltage, the pattern, however, quickly disappears



57

5

f=OLIZ, 3
Al

V

1!

0
0.0 0.2 0.4 0.6 0.8

i /ic

Fig. 4.2. I-V curves of a simulated 8 x 8 junction [1 1]-oriented square-
lattice array at magnetic-field strengths corresponding to f=O and 1/2
(solid and dashed lines, respectively). 12=-0.1 and iqcfic-).75 for both
these curves. Increments of ifi were 0.025 forfr0 and 0.005 forfi=1/2.
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Fig. 4.3. Time evolution of the supercurrents in a simulated [11]-oriented
square-lattice array on the first giant Shapiro step at D=0.1 and f=1/2.
Transport current flows from top to bottom. (a) At the beginning of an rf
cycle, the supercurrents form a checkerboard pattern of clockwise and
counterclockwise vortices within the array. (b) As the rf drive advances in
its cycle, only staircases of supercurrents flowing in the same direction as
the drive current exist and the aforementioned vortices completely
disappear. (c) At the peak of the rf drive cycle, the previous state
reappears, remaining until the end of the if cycle.
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and subsequently the previous state reappears, remaining until the end of the rf cycle (see

Figure 4.3c). The motion described above corresponds to a 27rN phase slip of the array

per rf cycle. Because the vortices disappear and reappear, their motion cannot be traced

continuously in a simple way and a more general model than that used for the [10]-oriented

arrays must be adopted.

In more detail, our simulations show that on a giant step at f=112 and low rf

frequencies (D2 < 0.6) all the time derivatives of the gauge-invariant phases, d-.4dt (and

hence all normal currents), in a plaquette are equal throughout an rf cycle (a typical wave

form is shown in Figure 4.4). Thus, normal currents and supercurrents are separately

conserved at each node. Supercurrent conservation is accomplished by having the

supercurrents always flowing in a staircase pattern with 71 = r2 and 73 = 74. If we also

require that the fluxoid in each plaquette must equal 2#ff= ir sincef=-1/2 in this case, we

find that 271 - 274 = x (mod 2n). Using these relationships, we see that the net

supercurrents IS and normal currents IN per niode are

Is= ic(sin 71 + sin 74) (4.2.5)

1N A 1d71  
(4.2.6)

e r dt

If we set the total current through the cell equal to the applied transport current, we find that

T d7 + - 2in 7 = idc + irf sin(wt) (4.2.7)
2 eicr dr 2

where ,-71-7r/4=4+rl/4, and idc=Idc/2 and irf=Irf/2 are the applied dc and rf current per

junction, respectively, in units of ic. From Eq. (4.2.7), we see that the phase constraints in

this regime cause all junctions in the array to have the same equation of motion as an
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Fig. 4.4. Normalized instantaneous voltage vs. time (in rf cycles) across
each junction in a plaquette of the simulated 8 x 8 junction [11]-oriented
square-lattice array on the first giant Shapiro step at i/ic-O.15 under the
drive conditions in Fig. 4.2. Data points representing all junctions lie on
top of each other and therefore cannot be distinguished in this figure.
Inset: 2x2 section of the [11-oriented array where the 7's are the gauge-
invariant phase differences of the corresponding junctions.
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isolated single Josephson junction with critical current equal to ic/v and resistance equal to

r in the RSJ approximation. Renne and Polder (1974) have shown that single overdamped

Josephson junctions produce only integer Shapiro steps.4 It follows then that the [11]-

oriented arrays cannot support fractional giant or subharmonic Shapiro steps in the fully

frustrated case, at least at frequencies low enough for the constraints derived from the

simulations to apply.

4.2.3 Possible evidence of spatial period doubling

We emphasize that our numerical analysis discussed in the previous section is valid

only for low rf frequencies (i.e. for 12<0.6) where the time derivatives of the gauge-

invariant phases, dy/dt, in a plaquette are equal throughout an rf cycle and the supercurrents

flow in a staircase pattern with ri = 72 and 3 = )4 (see Fig. 4.4). We cannot use the same

analysis for higher frequencies (2 >_ 0.6) because the dlldr's are no longer equal to each

other throughout an entire rf cycle, as shown in Fig. 4.5. In addition, although the

supercurrents still flow in a staircase pattern, now only 71 = 72; 73 # 74.

The breakup in the symmetry of the gauge-invariant phases at high frequencies can

be better described by pictorially displaying the flow of the supercurrents through the array

during an rf cycle on an integer step. When we do this, we observe that when we increase

the frequency above 2=0.6, the supercurrents form, quite suddenly, unusual flow

patterns. Figure 4.6a shows the rather simple and regular supercurrent flow pattern that

exists when 2<0.6. As a consequence of the supercurrents flowing in this manner, the

entire array can be described as a periodically repeated 2 x 2 unit cell (shown as the shaded

squares in the figure). At higher frequencies, i.e. 2 > 0.6, the flow pattern of the

supercurrent changes rather suddenly, as shown in Fig. 4.6b. Although the pattern is still

4Similar results and conclusions were also obtained by H. Eikmans and J. E. van Himbergen (1991) using
a stability analysis.
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Fig. 4.5. Normalized instantaneous voltage vs. time (in rf cycles) across
each junction in a plaquette of the simulated 8 x 8 junction [1 ]-oriented
square-lattice array on the first giant shapiro step at 0b=0.6 and iffic=0.875.

1, Y2, 3, and r4 are the same gauge-invariant phases differences shown in
the inset of Fig. 4.4.
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Fig. 4.6. (a) Supercurrent flow pattern throughout an 8 x 8 junction [11]-
oriented square-lattice array at 2=0.1 andf=I/2. Note that the entire array
can be described as a periodically repeated 2 x 2 unit cell [one of which is
shaded in the array]. (b, next page) Supercurrent flow pattern throughout the
same array at f=1/2. Now, however, D=1.0. Note that the supercurrent
pattern has expanded to a periodically repeated 4 x 4 unit cell (shaded region].
In each figure, the transport current flows from top to bottom.
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regular, it is no longer simple. Indeed, with the supercurrents flowing as they are, the

array is now a periodically repeated 4 x 4 unit cell (shown as the shaded squares in the

figure). If we increase only the drive current amplitude and keep S2 constant (where, again,

2- 0.6), the supercurrent flow, and subsequently, the spatial pattern of the array, changes

again such that the array consists of periodically repeated 8 x 8 unit cells. 5 Such spatial

period doubling has never been reported in a system of overdamped Josephson-junction

arrays and is quite surprising since the equation of motion of the system consists of only

first-order differential equations.6,7 We have tried to investigate this further using parallel

processors-a Connection Machine and a Maspar computer-since it is possible to

simulate extremely large arrays with far less cpu time than when using a conventional serial

computer (Sohn and Fitzgerald, 1991).8 However, due to the limited cpu time available to

period doubling versus rf frequency or drive current.9

5Spatial period doubling of this kind is very similar to that found in the patterned flow of water between
two rotating cylinders [Gollub and Swinney, 19741. In the latter case, spatial period doubling leads to the
onset of turbilence.

6 Evidence of spatial and temporal period doubling has been found in single underdamped Josephson
junctions and arrays where the equation of motion consist of second-order differential equations [see Octavio
and Guerrero, 1990; Octavio, 1984; Kautz and Monaco, 1985; and Hadley, thesis, 1988).

7 Although spatial or temporal period doubling is usually not found in systems whose equation of motion is
a first-order differential equation; such effects leading to chaotic behavior do occur in systems which consist
of coupled first-order differential equations. One example of this is the Lorenz system which models
weather patterns [Lorenz, 19631. The equations describing this system are given by

dld:=-o(y-x)
dy/dt.rx-y-xz
dz/dtfxy-bz

where oa, r, and b are constants. The solutions to the Lorenz system are highly sensitive to the initial
conditions and are complicated for a wide range of a, r, and b (Holden, 1986]. If we map out the trajectories
of the solutions, we produce what is lIown as the "Butterfly Effect." Our own system consist of -N2

coupled first-order differential equations; it should therefore not be surprising that we have found evidence of
spatial period doubling in our arrays.

8Use of a Maspar was provided by the Robotics Laboratory at Harvard University and use of the Connection
Machine, by Thinking Machines Corporation, Cambridge, MA.

9Because we are dealing with spatial and not temporal period doubling, we do not have any means of
experimentally investigating the just described phenomenon in our SNS arrays.
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4.3 Microscopic Model

In the following sections, we study both square- and triangular-lattice arrays of

overdamped Josephson junctions on a more microscopic level. Rzchowski et al. (1991)

have shown that the dynamics of an entire [10]-oriented square-lattice array atf=1/2 can be

modeled with a 2 x 2 unit cell of the array. Their analysis centers on the detailed response

of the gauge-invariant phase difference across each junction in the 2 x 2 cell. In

Sec. 4.3.1, we present our own analysis of a 2 x 2 unit cell of the [1l]-oriented square-

lattice array atf=1/2. In Secs. 4.3.2 and 4.3.3, we extend this "microscopic" model to the

unit cells of the [10TI-and [21"T]-oriented triangular-lattice arrays, respectively, and

describe our results.

4.3.1 The 2 x 2 unit cell of the [111-oriented array

As has been previously discussed, the [1 1]-oriented square-lattice array atf=l/2 can

be described as a 2 x 2 unit cell. Following Rzchowski et al. (1991), we demand that the

superlattice unit cell carry a net current equal to the external drive current. For the [11]

geometry, we model this as equal current flows of (Ito12 )=(idc + irfsinrot), where Itot is

the applied current per node (normalized to the single-junction, ic), in the orthogonal [10]

and [01] directions in the cell. If we satisfy fluxoid quantization and total current

conservation at the central node, we can write the following equations,

a+ y +P' +, = ir (mod 2 r) (4.3.1.a)

d'_..+ sinp' dLd - sin# = 4tt-2 (..1b
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-y+sn La i a =/tot (4. 3.1. c
+sin dr: 2ia Tc

dy da d+ d s -_ (4.3.1.d)
' "n+  a + sin Y + sin a2 - d ) d=

dr dr ny in d T

where a, P3, /3', and 7 are the gauge-invariant phase differences as denoted in Fig. 4.7,

'-(2eicrrl/)t, and Itot=Idc + Irf sin(owt) is the applied dc and rf current per node. Making

the following substitutions, x=()a)/2, y=(y+-a)/2, u=(fl-/')/2, and v=(3+3')/2, the above

equations become

dx inx= tot (4.3.2.a)
7-r- 4

d-r 4

d : + sinycosx - cosycosu = 0(4.3.2.c)

If we numerically solve Eq. (4.3.2), we obtain I-V curves which show only integer giant

Shapiro steps. In addition, we learn that dy/dT-rO. Using this fact, we find that we can

reproduce the equation derived from our simulations in the previous section, namely

dC +.-L sin C = hot(43)
d 4- 2-(.33

where =7-;r/4. In order to derive Eq. (4.3.3), we had previously assumed that the

voltages across the junctions in a plaquette were equal to one another. The numerical

solution to Eq. (4.3.2) shows us that this assumption is correct.
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1o

i~tot

Fig. 4.7. 2 x 2 unit cell of the [1 ]-oriented square-lattice array. The
gauge-invariant phase differences of the individual junctions are as
indicated. Itot is the applied current per node while i10 and ill are the
components of !rot in the [10] and [11] array lattice direction. Both i0
and ill are assumed to be Itot/2 .
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We comment again that Eq. (4.3.3) is equivalent to an equation of motion for a

single overdamped Josephson junction. Reiine and Polder (1974) have analytically shown

that these junctions produce only integer Shapiro steps. It follows then that [1 l]-oriented

arrays produce only integer steps as well.

4.3.2 [1011-oriented triangular-lattice array

Like the [10]-oriented square-lattice array, the [10 T]-oriented u-iangular-lartice array

produces both integer and fractional giant Shapiro steps. Satisfying fluxoid quantization,

current conservation and net current flow, we can write the following equations for the

[10O1] array unit cell whenf=1/2

a +,8+ y =x (4.3.4.a)

dy d + siny sina Iot (4.3.4.b)

dyd a .. s -f sin =o0 (4.3.4.c)
~r Tdr n snadrs

where a, 13, and rare the gauge-invariant phase differences denoted in Fig. 4.8. If we let

x=(y-cc)12 and y=(y+a)/2, Eq. (4.3.4) becomes

2T+ 2cosysinx = (4.35.a

2A + -sin2y + siycosx 0 (4. 3.5. b)
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O7O

tot

Fig. 4.8. Diagram of the unit cell in the [10T-oriented triangular-lattice
array. The gauge-invariant phase differences of the individual junctions
are as indicated. Itot is again the applied current per node.
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Numerically solving Eq. (4.3.5) for a variety of rf powers, we obtain I-V curves which

show both integer and fractional giant Shapiro steps. A plot of the stepwidth vs. rf power

is shown in Fig. 4.9. The general features of Fig. 4.9, namely an oscillatory behavior

similar to that of a single junction and a decrease in stepwidth with an increase in step

number, are similar to those found in the stepwidth vs. rf power of the [10]-oriented

square-lattice array.

4.3.3 [211]-oriented triangular-lattice array

We have simulated a [21 T]-oriented triangular-lattice unit cell, such as the one

shown in Fig. 4.10. Based on our knowledge of the phase evolution of the junctions in the

[11]-oriented square-lattice array on an integer step atf l/2 and at low rf frequencies, we

make the assumption that the phase differences of the diagonal junctions, denoted as yin

Fig. 4.10, are equal. Because the sum of the total current is conserved at each node and

because fluxoid quantization requires 2-a=24, then, forf=O, we obtain the equation

2d_ + 2sin- + sina =Itot (4.3.6.a)
d'r 2

Iff=1/2, Eq. (4.3.6.a) is replaced by

2d+ 2cos. + sin a ltot
2 (4.3.6.b)

Numerically solving Eq. (4.3.6.a), we obtain I-V curves which show only integer giant

Shapiro steps. Interestingly, identical I-V curves are obtained when solving Eq. (4.3.6.b).

Using the obtained I-V curves, we plot the stepwidth vs. rf power. Fig. 4.11 shows such

a plot forf-0 and 12=0.5. Here we see that, as in our experimental results, the odd steps
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0.3

0.2- *'

0.1

0.0 0.5 1.0 1.5
lac/ic

Fig. 4.9. Simulated stepwidth vs. rf power for the [10 1]-oriented
trianguilar lattce array atf=6112. Oscillatory behavior and a decrease in
stepwidth with an increase in step number are similar to single junction
behavior.
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tot

Fig. 4.10. Diagram of the unit cell in the( [211)T-oriented triangular-lattice
array. The gauge-invariant phase differences of the individual junctions
are as indicated. Again, Iro is the applied current per node.
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-e- n=O
1.2 . n=1

, n=2
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0.0
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iac/ic

Fig. 4.11. Simulated stepwidth vs. rf power for the [2TT)-oriented
triangular-lattice array at f=O. Odd steps are smaller than even steps,
agreeing with experimental results. Even steps never go to zero.
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are indeed smaller than the even ones. Interestingly, the widths of the even steps never go

to zero for any rf power.

4.4 Conclusion

The analysis we have just outlined can be used only for cases in which the array can

be broken down into a periodically repeated cell. For the square-lattice array, we saw that

we could describe the array as a periodically repeated 2 x 2 unit cell. For the triangular-

lattice array, we saw that we could describe it as single unit cell. The size of the

superlattice cell in the presence of a drive current atf1/2 for intermediate angle arrays,

such as the 15' array we experimentally studied, is not known at this time. Large scale

simulations, such as those discussed in Section 4.2, are needed to determine this and to

understand the frner details of these intermediate arrays. The spatial period doubling that

was found in the [11 ]-oriented square-lattice arrays using the large scale simulations cannot

be investigated using our microscopic model since this model constrains the evolution of

the gauge-invariant phase differences.



CHAPTER V

SNS ARRAYS: DISCUSSION

5.1 Introduction

Our experimental results show that the macroscopic transport current direction

plays an important role in the observed step structure of square- and triangular-lattice

arrays. In the systems we have studied, we found that the [10]-oriented square- and

[10"1)-oriented triangular lattice arrays produce strong fractional giant Shapiro steps. These

arrays have junctions which are perpendicular to the transport current and hence do not

carry any component of the external current. In addition, the Lorentz force created by the

macroscopic transport current is directed towards the junction sites. In contrast, we found

that the [II-oriented siare- and [21 T]-oriented triangular-lattice arrays produce only

integer giant Shapiro steps. All the junctions in these arrays carry some component of the

external current. More importantly, however, the Lorentz force in these arrays is directed

towards the island sites. This results in the arrays being mathematically reducible to a

single junction forf=-1/2. The 150 array is an intermediate case, as we have found that this

array produces weak fractional giant Shapiro steps. Like the [11)-oriented square- and

[21 T]-oriented triangular-lattice arrays, all of the 150 array's junctions carry some

component of the external current; however, unlike the [11]-oriented and [21 1]-oriented

arrays, the Lorentz force is directed (albeit somewhat obliquely) toward the junction sites.

In the following sections, we present two very different models which describe the

dynamical properties of proximity-effect Josephson-junction arrays. 1 The two models,

together, provide us with a better understanding of the arrays we have studied.

IMuch of what is presented in tis chapter as been published in Sohn et al., 1992a.

76
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5.2 The Moving Vortex Model

The behavior of [10]-oriented square-lattice proximity-effect Josephson-junction

arrays has been described in terms of the driven motion of a superlattice of field-induced

vortices commensurate with the underlying array lattice [Benz et al., 1990; Free et al.,

1990; K. H. Lee et al., 1990; and H. C. Lee et al., 1990]. For example, when f=1/2, the

2 x 2 vortex superlattice moves one array unit cell in a direction perpendicular to the

trasport current after one rf cycle (see Figure 5. 1). This motion leads to each junction in

the array having an average phase slip of Yr per rf cycle. From the Josephson voltage

relationship [Josephson, 1962],

V h d (5.2.1)2e dt

it follows that the average voltage across the entire array is

(V)=N V = N hv (5.2.2)

which is Eq. (3.1.2) with n=1 and q=2.

There is some ambiguity involved, however, in using the vortex model when

f=1/2. This happens because every plaquette is occupied by a circulating current, so it is

not completely clear whether to count clockwise currents, counterclockwise currents, or

both as "vortices." Nonethele:s, we have found that the vortex model is a useful

phenomenological description. The basic assumptions are that the overall macroscopic

motion of the vortices is perpendicular to the external current direction, and that each

junction wii undergo a phase slip of 2r in the time it takes for the driven vortices to return
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Lorentz

Force

1 ext

Fig. 5.1. Vortex configuration in the [103-oriented square-lattice array at
f=1/2. Large vertical arrow indicates the direction of the Lorentz force
resulting from iext. Small arrows indicate macroscopic motion of vortices
during one rf cycle on the n/q=1/2 step.
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to their original configuration. (A more precise, but less intuitive, model [Octavio et al.,

19911 is presented in the following section.)

Consider next the [1 ]-oriented square-lattice arrays in the presence of a general

field f=p/q. In this case, the Lorentz force directs the vortices toward the high energy

barriers of the island sites (see Fig. 5.2 for thef=1/2 example). As we stated previously in

Sec. 4.2.2, vortices cannot move through such a barrier, they can only move through the

low energy barrier [Lobb et al., 1983] of the egg-carton potential. Based upon this, we can

only conclude that no vortex-superlattice motion can occur in the [I 1-oriented square-

lattice arrays. Consequently, these arrays behave like a set of coupled series arrays which

produce only integer giant Shapiro steps.

Unlike in the [11]-oriented arrays but very much like in the [10]-oriented arrays,

vortex-superlattice motion can occur in the 150 square-lattice array. The Lorentz force, in

this orientation, directs the vortices, albeit obliquely, through the low energy barrier of the

egg-carton potential of the array and into tht nearest-neighbor plaquette. Consequently,

fractional giant Shapiro steps can be produced by the 15* array, but less strongly than in the

[ 10]-oriented arrays, where the Lorentz force is directed exactly towards the lowest barrier

position.

As we have stated previously, the experimental results we have obtained for the

square- and triangular-lattice arrays are very similar. Like the (10]-oriented square-lattice

array, the [101]-oriented triangular-lattice array exhibits fractional steps at voltages

corresponding to Eq. (3.1.2). In Figure 5.3 we have drawn thef=1/2 state of the [lOT]-

oriented array. Here we see that the macroscopic motion of the vortices is through the low

energy barrier of the egg-carton potential and toward the nearest-neighbor plaquette. Thus,

the junctions in the array can slip 2irmlq per rf cycle and correspondingly produce fractional

giant Shapiro steps.

The [2 1 1 ]-oriented triangular-lattice array is the most interesting of all the arrays

we have studied. In Fig. 5.4 we.have drawn the f=1/2 state of this array and have
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Lorentz
Force

iext

Fig. 5.2. Vortex configuration in the [11]-oriented square-lattice array at
f=1/2. Large vertical arrow indicates the direction of the Lorentz force
resulting from iext. Small arrows indicate macroscopic motion of vortices
during one rf cycle on the n/q=1 step.
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Lorentz
Force

iext

Fig. 5.3. Vortex configuration in the [10TI-oriented triangular-lattice
array atf'-l/2. Large vertical arrow indicates the direction of the Lorentz
force resulting from iext. Arrows indicate macroscopic motion of vortices
during 2 subsequent rf cycles on the n/q=1/2 step. While the light arrows
indicate vortex motion during one rf cycle, the dark arrows indicate vortex
motion during a subsequent rf cycle.
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Lorentz
Force

iext

Fig. 5.4. Vortex configuration in the [21 1)-oriented triangular-lattice at
f=l/2. Again, large vertical arrow indicates the direction of the Lorentz
force resulting from iexr. The light arrows show that some of the vortices
are directed toward the low energy barrier of the egg-carton potential. The
dark arrows show that the remaining vortices are directed toward the high
energy barrier. Because vortices cannot go through this barrier, no vortex-
superlattice motion is possible. Fractional giant Shapiro steps are therefore
not produced.

p •1i
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indicated by arrows the direction in which the vortices should move under the influence of

the Lorertz force. The light arrows in the figure show that some of the vortices are directed

toward the low energy barrier of the egg-carton potential and through the nearest-neighbor

plaquerte. The dark arrows show that the remaining vortices are directed toward the high

energy barrier of the egg-carton potential. Since, as we have stated previously, vortices

cannot go through the high energy barrier, we assert that no vortex-superlattice motion

occurs in the array. Thus, as in the [113-oriented square-lattice array, the [211 ]-oriented

triangular-lattice array behaves as though it were a coupled series array which produces

only integer giant Shapiro steps.

As we have stated previously, changing the macroscopic current direction does not

affect the general features of the linear magnetoresistance of square- and triangular-lattice

arrays, although it does affect the non-linear rf response of the individual arrays. The field

modulation in a magnetoresistance measurement comes from the fact that the resistance, R,

is a function of T/Tc(f), which in turn is a function of field, not current. When we apply a

small current, regardless of its direction with respect to the array, the wells in the egg-

carton potential tilt slightly. Thermal fluctuations lead to the unpinning of the vortices and

to the subsequent creation of a small voltage across the array. In an rf experiment, we are

driving the system very hard, literally dragging the vortices from well to well. Therefore,

current direction should and does play an important role in the outcome of these types of

experiments.

The moving vortex model is only a phenomenological model which explains in

general terms why fractional giant Shapiro steps can or cannot exist in certain oriented

arrays. As we have just shown, when the Lorentz force in an array directs the vortices

toward the high energy barrier of the island sites, no vortex-superlattice motion is
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possible, 2 since the vortices cannot go through the islands. Consequently, the array

behaves as though it were a set of coupled series arrays in zero field and produces only

integer giant Shapiro steps. Since the moving vortex model is unable to predict the widths

of the giant Shapiro steps, we take an entirely different approach towards explaining the

presence or absence of fractional giant Shapiro steps in Josephson-junction arrays. In the

section below, we undertake this task by examining the individual junctions in an array unit

cell and applying Kirchoffs voltage law.

5.3 The Pendulum Model

The equation of motion for a single Josephson-junction [Eq. (4.1.1)] is identical to

that of a damped driven pendulum with mass - C, damping - I1R, and with constant and

ac applied torques. In an array, &he equations are coupled, via Kirchoff's laws, and the

array becomes equivalent to a network of coupled pendula. Thus, representing the gauge-

invariant phase differences, 7ij, where i and j are the ith and jth island in the array as

pendula, is a pictorial and quantitative description of the dynamical properties of the array

[Octavio et al., 1991].

When driven by an rf current with frequency v, a single junction can phase-lock to

the rf cu-rrent. When the junction is overdamped, 7swings around a total of 27rn in one rf

cycle. If <dT/dt> equals 2rn v as we have indicated, Eq. (5.2.1) transforms into the

equation of an integer Shapiro step [Eq. (1.2.4)].

The above model has been successfully applied to the [10]-oriented square-lattice

array [Octavio et al., 1991]. Forf-0, the junctions parallel to the direction of the transport

2Simulations with periodic boundary conditions were done on 4 x 4 , 6 x 6, and 8 x 8 junction [1]-
oriented square-lattice arrays. These simulations showed that the vortices disappeared and reappeared in the
next-nearest neighbor cells during one rf cycle. See Chapter IV for more details.
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current act like isolated Josephson junctions and the perpendicular junctions play no role in

the array. Eq. (3.1.1) is obtained by considering N Y s swinging 21m times per rf cycle.

For the f=1/2 state, the pendulum model must be applied to a 2 x 2 unit cell

[Octavio et al., 1991]. In Figs. 5.5a and b, we have drawn two alternative versions of the

f=1/2 ground state of such a cell. We take the phase differences, denoted as YA and ^B, of

the junctions parallel to the external current to be equal to ±r14 (the array's ground state at

f=112 [Teitel et a., 1983a]) at the beginning of the rcycle. When ¢ext is applied in the

direction shown in the figure, it winds A and YB counterclockwise, YA by 37r/2 and 7B by

7r/2 [Free et al., 1990], in one rf cycle (see Fig. 5.5c) such that the cell is now in the other

f=1/2 ground state shown in Fig. 5.5b. In the following rf cycle, the external current, iext,

again winds 7A and 7B counterclockwise: this time YA by Yr/2 and 7B by 3x/2. Since half

of the junctions in the array act like junction A and the other half act like junction B, we

obtain an average phase-slip of rper rf cycle per junction. Eq. (3.1.2) is thus obtained.

For the [I 1]-oriented square-lattice array in the f-0 case, every junction is directly

and equally injected with the transport current. Thus, all junctions in the array act like a

single Josephson junction and will correspondingly phase-slip 21m per rf cycle. Again, we

see that we have obtained Eq. (3.2.2).

Forf=1/2, we look at a particular plaquette in the array. Fig. 5.6a shows a

plaquette with the direction of the transport current as indicated. We see in this figure that

there are two different paths by which current travels across the [1 ]-oriented array. By

Kirchoff's voltage law, VA + VB=VC + VD. This additional constraint forces 7A + B to

rotate rigidly with 7D + 7C by 2z per junction per rf cycle as shown in Fig. 5.6b.3 (Our

simulations show that at low rf frequencies the array remains in the staircase state. By

definition this means that YA = 7 B and is 7r/2 out of phase with 7D = 7 C).

3The absence of fractional giant steps in the [I 1)-oriented square-lattice array atf-1/3 can also be explained
by using Kirchoff's voltage law. As opposed to the two we found in thef=1/2 state, there are actually three
different types of staircases in the array atf=1/3. By Kirchoff's voltage law, the voltage across each
staircase must be the same. We again deduce that the only periodic solution which satisfies Ais
requi-ement is one in which every junction must phase-slip 2m per rf cycle.
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Fig. 5.5. Gauge-invariant phase differences, y, for junctions in a 2 x 2 unit cell on
the n/q= 1/2 step at the (a) beginning and (b) end of an rf cycle in the [10]-oriented
array atf=-/2. Arrows indicate the direction of the supercurrents. The motion of
yA and ) over the same time period is shown in the "pendulum" diagram (c). At
the end of one rf cycle, the pendula have interchanged positions; YA has advanced
3N12 while B has advanced by x/2.



87

ext
(a)

(b)
Fig. 5.6. (a) Gauge-invariant phase differences, y, for junctions in a unit
cell on the n=1 step in the [11)-oriented square-lattice array atf=1/2.
Arrows indicate direction of the supercurrent. (b) The motion of yA and
)S over the same time is shown in the "pendulum" diagram (c). Unlike in
the [1O]-oriented case, in the [I 1)-oriented case, each pendulum has
advanced by 2z at the end of one rf cycle.

i I I
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The results we have obtained from studying the triangular-lattice array can also be

explained using the pendulum model. As in the [10]-oriented square-lattice case, in the

[10 T]-oriented triangular-lattice, we find that the gauge-invariant phases are not forced to

be locked together and move at some fixed rate per rf cycle in order to satisfy Kirchoff's

voltage law. The perpendicular junctions allow the other junctions to rotate more freely.

Therefore, the phases can evolve such that fractional steps can exist in this type of an array.

In the [2 T 1I-oriented triangular-lattice array, we see that the array really has two

types of junctions: straight-feed-through junctions, A, and diagonal ones, B and C, as

shown in Fig. 5.7a. By Kirchoffs voltage law, we see that 7A must move twice as fast as

1B and Yc per rf cycle. Thus, while junctions B and C are on their first giant Shapiro step,

junction A is already on its second step (see Fig. 5.7b). Based on our analysis of the [111-

oriented square-lattice case, we propose that Kirchoff's voltage law and the absence of

perpendicular junctions again constrain the evolution of the gauge-invariant phase

differences per rf cycle such that the only periodic solution is one in which the phases of

the junctions rotate in multiples of 2rper rf cycle. Thus, only integer giant Shapiro steps

are produced by the [21 T ]-oriented triangular-lattice array.

The alternating step widths produced by the [21 TI-oriented triangular-lattice array

can be accounted for by examining Eq. (4.3.6). In this equation, we see that the sin(L'2)

term, the term describing the diagonal junctions, contributes to only the even harmonics of

the time-dependent voltage since its fundamental period is 4,rn. The term describing the

straight-feed-through junctions, sin(a), contributes to both the even and odd harmonics of

the time-dependent voltage as its fundamental period is 27m.4 When the array is on an odd

step, only the straight-feed-through junctions are on the step; the diagonal ones still have

not locked to the rf frequency and are therefore not on a step. When the array is on an even

4 We have simulated junctions whose current-phase relationship has been modified to sin(ka) + sin(ma).
We obtain I-V curves which show subharmonic steps corresponding to (nlq)=ilk and (n/q)=l1m. It follows
then that the sin(ka) term contributes to the 2n/k harmonic of the time-dependent voltage and the sin(ma)
term, to the 2ff/m harmonic.
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Fig. 5.7. (a) Gauge-invariant phase differences, , for a plaquette in the
[21 1)-oriented triangular-lattice array atfr-/2. Arrows again indicate thedirection of the supercurrent. (b) By Kirchoff's voltage law, VA=VB+VC
and accordingly, yA must rotate 4xn per rf cycle while 7s and rC each
rotate 2an per rf cycle on the nth giant Shapiro step.



90

step, however, all the junctions are on a step, although not on the same step. As a result,

the even steps are much wider than the odd ones, and do not go to zero width because the

two steps go to zero for different power levels.

We stress that because of the perpendicular junctions in the [10)-oriented square-

and [10 T]-oriented triangular-lattice arrays, the phase differences of the other junctions are

not tightly locked together and therefore do not have to rotate at the same rate each if cycle.

Consequently, fractional giant Shapiro steps can be produced by the array. Contrast this to

the [11]-oriented square- and [21 T]-oriented tria- - lar-lattice arrays in which there are no

perpendicular junctions. In this case, the phase -erences of the junctions are locked

together and must phase slip at the same rate each rf cycle, so that the only periodic solution

is one in which integer giant Shapiro steps are produced.

5.4 Conclusion

In the course of our study, we have seen the importance of current direction on the

dynamics of proximity-effect Josephson-junction arrays. When the Lorentz force, created

by the transport current acting on the vortices, is directed toward the island sites, only

integer giant Shapiro steps [Eq. (3.1.1)] are produced. The Lorentz force in the [1l]-

oriented square- and [211]-oriented triangular-lattice arrays we studied directed the

vortices toward the island sites, and indeed, these arrays produced only integer giant

Shapiro steps. If, however, the Lorentz force produced is directed (even somewhat

obliquely) toward the junction sites, both integer giant [Eq. (3.1.1)] and fractional giant

[Eq. (3.1.2)] Shapiro steps are produced. The Lorentz force satisfied this condition in the

[10)-oriented and 150 square- and [101]-oriented triangular-lattice arrays. These arrays

produced integer and fractional giant Shapiro steps.

The exact relationship between decreasing fractional giant Shapiro stepwidth and

current orientation is presently unknown since rounding of the steps due to thermal



91

fluctuations, noise, and inhomogeneities in the array makes it difficult to experimentally

measure the actual stepwidths. This prevents us from making a quantitative comparison

between the results of our experiments and those of theory; only a qualitative comparison

can be made. Based on our study of the square-lattice arrays, however, we hypothesize

that this relationship might be cos(20) or cos2(2G), where e is the angle off the [10]

orientation.

In this chapter, we have presented two very different models under which we can

interpret our experimental and numerical results. The moving vortex model provides a

phenomenological explanation of why fractional giant Shapiro steps can or cannot occur in

the various types of arrays studied. As was stated previously, in the cases where the

Lorentz force directs the vortices toward the high energy barrier of the islknd sites, no

vortex-superlattice motion is possible and the array behaves as though it were a set of

coupled series arrays in zero field. The pendulum model gives a detailed description of

how the gauge-invariant phase differences of the individual junctions evolve per rf cyce.

In this model, we see that Kirchoff's voltage law constrains the evolution of the phase

differences so that for the [1 ]-oriented square- and [21 T]-oriented triangular-lattice cases,

the only periodic solution allowed is one which corresponds to integer giant Shapiro steps.

The perpendicular junctions in the [10]-oriented square- and [10T]-oriented triangular-

lattice arrays, however, allow the phase differences of the other junctions in the array to

evolve more freely per rf cycle. As a result, the allowed periodic solutions correspond to

both fractional and integer giant Shapiro steps.



PART B: ARRAYS WITH LONG-RANGE

INTERACTION

CHAPTER VI

MEAN FIELD THEORY

6.1 Introduction

Two-dimensional arrays of Jc, cphson junctions with short-range interaction are

excellent models for exploring two-dimensional phase transitions,1 flux pinning

[Rzchowski et al., 1990], and glassy behavior [Pannetier et al., 1983 and 1984]. These

arrays consist of superconducting islands which are arranged in a geometric lattice (usually

triangular or square) and are Josephson-coupled to their nearest-neighbors. 2 In this chapter

and the following, we present a theoretical and numerical investigation of a novel type of

Josephson-junction array whose interesting properties in the disordered limit have already

been theoretically noted by Vinokur et al. (1987).3 The arrays we examine differ from

conventional Josephson-junction arrays in that they consist of two orthogonal sets of N

parallel superconducting wires which are coupled to each other by a Josephson junction at

every point of crossing (see Fig. 6. 1). Because each vertical (horizontal) wire in the array

is directly Josephson-coupled to every horizontal (vertical) wire, we describe these novel

arrays as having long-range interaction.

ISee for instance, Kosterlitz and Thouless (1973); Lobb et al. (1983); Lobb (1984); and Mooij (1983a).

2 See for instance, Brown and Garland (1986); and Sohn et al. (1992a).

3Much of what is written in this chapter has been submitted for publication [Sohn et al., 1992b).

92
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x

(a)

Superconducting
Wires

Josephson
(b) Junction

Fig. 6. 1. Schematic drawing of an (a) ordered and (b) disordered
Josephson-junction array with long-range interaction. The black lines, as
indicated above, are superconducting wires which are coupled together
through Josephson junctions.
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For the system we have examined, it is assumed that the Josephson inductance

(h2eic) of each junction is infinitely greater than both the kinetic and electromagnetic

inductance of the wires connecting adjacent junctions. Consequently, for any circulating

current flowing through the array of Josephson junctions, one can assume that the phase

gradient along any wire in the array arises only from the presence of an external magnetic

field. [In fact, this condition is hard to satisfy experimentally, except in small arrays,

because of the N junctions in parallel coupled to a single wire.4] The Hamiltonian of the

system is thus given by the sum of individual Josephson junction energies,

i=lj=l

Here, 94 is the superconducting phase at x-=O of the ith horizontal wire, is the phase at

y=O of the jh vertical wire, N is the number of wires in each direction or set, El is the

i

Josephson-coupling energy which we take to be constant, and Aij=-fJA* d where

A=HxI, and 4, is one flux quantum.

Using the Thouless-Anderson-Palmer (TAP) equation [Thouless et al., 1977],

Vinokur et al. (1987) showed that in the presence of a strong transverse magnetic field,

disordered arrays with long-range interaction, i.e. those arrays in which the wires of each

orthogonal set are randomly displaced, model a spin glass, and they investigated the glassy

dynamics of such a system. To be more specific, they showed that these arrays undergo a

phase transition at a temperature,

4See Chapters VIII and IX for funh& details.
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ENV2  + 2H+ (6.1.2)

c 2 3/2 k I' H ~Hj

where Ho is the field required to generate a flux quantum through the average-sized strip

between two adjacent wires and H is the applied field [Vinokur et al., 19871. Below this

temperature, the random phases of the individual wires, q,freeze into a macroscopically

phase-coherent state such that,

(eigi ) # 0

without any long-range periodic order in their values. From (6.1.2), we see that for

H>>Ho, Tc approaches, to lowest order in Ho/H, the limiting form,

= EJN112  (6.1.3)TC 2k8

and for H<<Ho,

EJN112 ( 2(6.1.4)
TC 2k 8  HT)(614

We have further studied these novel arrays, in both the ordered and disordered

limit, by using the more simple mean-field approximation and Monte Carlo (MC)

simulations. Despite general agreement between our results for the disordered arrays and

those of Vinokur et al. (1987), some quantitative discrepancies do exist, which may stem

from finite-size effects and the limited amount of disorder present in our arrays.
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In this chapter, we describe our mean field analysis 5 of ordered and disordered

arrays with long-range interaction. We will present the results of our MC simulations in

the following chapter and show that they are in good agreement with our mean field

analysis. In addition to our theoretical and numerical work, we have fabricated these novel

arrays and have performed both ac susceptibility and dc transport measurements on them.

Our experimental procedure and results will be presented in Chapter VIII. Finally, in

Chapter IX, we will discuss our experimental results.

6.2 Mean Field Theory

6.2.1 Ordered arrays

To perform a mean field analysis of ordered arrays with long-range interaction, we

follow closely Shih and Stroud's mean field analysis of conventional Josephson-junction

arrays [Shih and Stroud, 1983]. Shih and Stroud (1983) obtained the thermodynamic

properties of conventional arrays by treating the phases of the individual array islands, q,

as classical thermodynamic variables within the canonical ensemble. Because of the long-

range interactions in the arrays we now study (in contrast to the arrays previously studied),

we are able to find analytical expressions for both the temperature-dependent order

parameter of the system and the field-dependent transition temperature.

If we treat the phases of the individual wires in our arrays also as classical

thermodynamic variables, we can calculate the order parameter of our system,

5Th= (exp(ilf))y using the following

5The mean field analysis was performed by M. S. Rzchowski (1992).



97

fl7i P>±dq~e zPe3  (6.2.1)

Here, HMF is the contribution of the ith wire to the total mean-field Hamiltonian and is

given by

N-E1 Z [cos~h(cos(q+~ mi)) +sin h(singy +Aij))] (6.2.2)HMF = +E o Co 622
i j=l t-  iI(

where ipY are the phases of the vertical wires which are directly coupled to the horizontal
J

wire of phase (. Zi is the partition function,

Zi =f die_flHMF (6.2.3)

and 3=(l-/ksT). The expectation values in Eq. (6.2.2) are solved self-consistently from

equations of the form of Eq. (6.2.1).

In zero field, 77h = r7i a r7, and consequently, Eq. (6.2.1) can be rewritten after

some reduction as

1I (NEjf3I771) (6.2.4)

11110 (NEj3j 771)

where 11 and 1o are Bessel functions of the second kind. Fig. 6.2 shows a numerical

solution of 171 as a function of 2kBTINEj in zero field. Near the array's transition
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Fig. 6.2. Numerical solution for the magnitude of the order parameter, 77,
as a function of 2kBT/NVEJ.
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temperature, all the ?7's are small, and correspondingly, so are the expectation values in Eq.

(6.2.2). Eq. (6.2.4) can therefore be expanded for small argument to obtain,

rc = NEJ (6.2.5)

The direct proportionality of the transition temperature to the number of horizontal or

vertical wires in the array can be readily understood by recognizing the fact that in order for

the system to enter the phase-coherent state, the energy per wire available for fluctuation

(kBT) must be on the order of NEJ, the total coupling energy between that wire and the

wires orthogonal to it.

The mean energy per wire of the system in zero field can be derived from Eq.

(6.2.2) and summing it over i. Doing this, we obtain the mean-field Hamiltonian,

N -.,h N *

HMF =-ReEJ e IPi N 7v (6.2.6)
i j=

The average of HMF is thus

N
(HMF)=-ReEjI i 17Y* (6.2.7)

i,j=1

Since, as we have stated above, 7h -- r= 77 in zero field, Eq. (6.2.7) becomes

N
(HMF) = -EjI i]' = -N217hj 2 Ej (6.2.8)

i,j--1
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For 2N wires, this means that the energy per wire is -MT7I 2EjI2. Taking the derivative of

Eq. (6.2.8) with respect to temperature, we can obtain the heat capacity, Cv, of the system.

Fig. 6.3 shows the plot of heat capacity per wire (in units of kB), Cv/2NkB, vs.

temperature. The data show typical mean field behavior, as well as the classical

equipartition value of (1/2)kB per degree of freedom (wire) at low temperature.

We draw attention to the important fact that the derived thermodynamic properties

of our arrays are all directly dependent on N, the array size. As N grows, so does the

number of nearest-neighbors in the array, and consequently, the system becomes more

mean field-like. This behavior is quite unlike that of conventional Josephson-junction

arrays in which the number of nearest-neighbors remains constant despite the overall array

size. The properties of conventional arrays are size independent.

In the presence of a magnetic field, corresponding to a commensurate number of

flux quanta per unit cell, f=p/q (where p and q are small integers), we expect the ground

state phase and corresponding current configuration to be spatially periodic. Fig. 6.4

shows ground state configurations forf=-1/2 and f=1/3. Values at the intersection of wires
v 2,fj- Tin this figure indicate the gauge-invariant phase difference (94 - _.Jo.o di)

across the junction at that position. The sum of the gauge-invariant phase differences

(keeping track of the appropriate minus signs) around any closed loop is constrained by

7y = 2(n - f) n =...-2,-1,0,1,2...

where n in the ground state is typically either zero or one. We employ bold plus signs in

Fig. 6.4 to denote the centers of the smallest positive circulating current loops. If we view

the ground states in terms of these positive circulating currents, we find that the states

appear very similar to the ground states of conventional four-nearest-neighbor arrays,

despite the fact that their properties are very different.
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Fig. 6.3. Heat capacity per wire, C vI2NkB, vs. normalized temperature,
2kBT/NEJ, as calculated by our mean field approximation.
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V6 _ V6 - __2 V 6

7V4~~ L J /4II +
+ +_ ff2-67V V

H _ 0__- 11+11+1
V46 Wr6 -n
Li LI L_

f=1/2 f=1/3

Fig. 6.4. Ground state configurations forf=1/2 and 1/3. The values at

the intersection of the wires are the gauge-invariant phase difference,

;ih _ j _ 2z d, across the junction at that position. The bold-

face plus signs denote the centers of the smallest positive circulating
current loops.



103

To calculate the array's transition temperature in the presence of a magnetic field,

we again assume the order parameter, 77, is small. Using the method of Shih and Stroud

(1987), the self-consistency equation [Eq. (6.2. 1)] can be expanded to read

1 N-1

7= 2~IEXe(~fk (6.2.9)
k 0

Equivalently, we can write

N-1
= PEj o j e-i(2 nfjk) (6.2.10)

Substituting Eq. (6.2.10) into Eq. (6.2.9), we find that

h 2 77h 1 Y- 4 - j')(2 nft)77 , (PEJ) 0 1 k- eJ (6.2.11)

Iff = p/q, where p and q have no common factors and q <N, we can sum over k in

Eq. (6.2.11) to obtain

h (pJ)2N-1

i jl-~I = 0j J j m

Since the delta-function is satisfied N/q times in a field of p/q, and 77n=Tin+q, we have

h _ PJ 1
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which directly results in a mean-field transition temperature

T =NE (6.2.14)
2 kBWq

in a field off = p/q.

Summarizing, we have found the mean-field temperature for a transition to the

ordered ground states described above in a field of f=p/q to be Tc(q) = NEJ' for an

2 kB W q
N x N array with q<N. Since two numerically close values of f can have very different

values for their denominator q, Tc(q) is a very discontinuous function in the case of an

infinite array (see Fig. 6.5). These discontinuities are of course not present in the case of a

finite array. By employing a finite-size analysis, we can understand the process by which

the discontinuities are smoothed. Combining our previous expressions Eq. (6.2.9) and

Eq. (6.2.10) for the linearized self-consistency equations near Tc, we can write

N-I N1(k*h 4 7 0
0 ~1  j kka 7jk ( ,E)2 7  =0 (6.2.15)j, =0 k=0

where CZjk=exp(i2nfjk). This expression is equivalent to the eigenvalue problem derived

by Vinokur et al. (1987) in the disordered case. We have explicitly diagonalized the above

matrix equation for a finite 10 x 10 array, calculating the mean-field transition temperature

from the largest eigenvalue. We find that the mean-field transition in this finite array is a

continuous function off (see Fig. 6.6), as it must be physically, and equal to the infinite-

array mean-field value for commensurate applied fields. We suggest that this continuous

change of Tc with applied field is associated with a corresponding continuous change in the

ground state configuration of the finite array. In contrast, the ground states in the infinite
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Fig. 6.5. Normalized transition temperatue, 2kBTC/NVEj, vs. number of
flux quanta, f, per unit cell in an infinite-sized ordered array. The
discontinuities found in this plot are not found in finite-sized ordered arrays
(see Fig. 6.6).
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Fig. 6.6. Normalized transition temperature, 2kBTc!NEj, vs. number of
flux quanta, f, per unit cell in a 10 x 10 array. Here, f<IIN. Unlike in an
infinite array, Tc is a smooth continuous function off in a finite-sized array.
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array have a q x q periodicity in a field of f=p/q, and hence the current distribution changes

discontinuously withf.

Using current conservation in each wire as the equilibrium condition, we have

calculated, to first order, states corresponding tof near a commensurate value in the finite

array. We find these states to be made up of the commensurate ground states plus

additional, small circulating currents analogous to a Meissner shielding state (except that

these currents do not significantly shield the applied magnetic field because of the small ic

we have assumed). Near zero field, for example, we expect the ground state to be of this

"Meissner" form until f=lIN in an N x N array. In this regime, Tc drops smoothly from

NEj2kB forf=O to its low value of Tc(f-O)/V' forf=1/N, the smallest commensurate

field.

If one assumes the form Tlj=lrlleiPJ for the order parameter of thefh wire, (where Pj

is the ground state phase of that wire), one can show that after substituting T/Tc(q) for

NEjJ3/2 in Eq. (6.2.4), the mean-field thermodynamic properties derived in the zero field

case and shown in Figs. 6.2 and 6.3 are in fact universal for all fields commensurate with

the array.

6.2.2 Disordered arrays

We can also use matrix Eq. (6.2.15) to analyze the disordered mean-field TC, as

done by Vinokur et al. (1987), by replacing our previous expression for ajk with

exp[i2xf(j+8j)(k+k)]. Here 8j and 8 k represent the deviations of the jth and kth wires

from their ordered positions in units of the lattice constant. Fig. 6.7 shows the Tc

(identified with the largest eigenvalue) of a 10 x 10 array averaged over an ensemble of ten

systems. Each of these systems has spacings between the parallel wires which are

uniformly distributed by up to ± 0.1Ax, where Ax is the mean spacing.



108

0o

00

3NI I-4

E,..

CD .1! 0
% E

- ~ E
4--4

cc LA

I _ III

000

00 0 El N



109

As shown in the figure, the behavior as a function of field can be divided into four

general regions. For extremely small fields, f < -L, Tc approaches the zero field limit,

Tc=NEj/2kB, since the amount of flux entering the entire array is much smaller than one

flux quantum. For small applied field, -< f < , Tc decreases as f increases. We
N2  N,~dcessa nrae.W

note that this region directly corresponds to the one where H<Ho (where, again, Ho is the

field required to generate a flux quantum through the average-sized strip between two

adjacent wires) in Vinokur et al.'s analysis (1987). In the intermediate region, I < f < 1,

we observe complicated behavior which we ascribe to the similarity between the disordered

and ordered arrays when f is small. When f~j < 1, we expect (from our disordered

expression for ajk ) that the effect of the disorder will be small, and thus, the dependence

of Tc on f should resemble that of the ordered case. This is seen in Fig. 6.7 for

1
- 5 f < 1, where the Tc, like that in the ordered array, rises (although the exact form is

unknown at this time). Asf increases to values greater than 1, the effects of disorder

become more apparent, and the behavior moves toward the field-independent behavior

described by Vinokur et al. (1987) in Eq. (6.1.3). We note, however, that the high field

asymptote of Tc (-O.85EJp4V/kB) predicted by our mean field analysis is significantly larger

than that predicted by Vinokur et al. (1987) (EJMN/f2kB) for the same sized array. We will

comment on this discrepancy in the next chapter.

6.3 Discussion

The size effects we have discussed in arrays with long-range interaction are unlike

those found in conventional Josephson-junction arrays. Conventional arrays undergo a

Kosterlitz-Thouless (K-7) phase transition in which thermally activated vortex-antivortex

pairs become bound below a certain temperature, TKT, which is independent of the actual
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size of the array. TK" is determined by the vortex core energy which does not change with

array size for N -- a*, and hence neither does TAT.

Finite-array size, however, does affect the nature of the K-T transition in

conventional arrays. The resistive behavior of these arrays can be described by the

relationship, Vc.cIa(T). In the ideal case, i.e. an infinite array, the exponent, a(T), is

predicted to jump from 3 just below TKT to I just above [Nelson and Kosterlitz, 1977].

This sharp jump, known as the universal jump in the superfluid density, indicates the

unbinding/binding of the vortex-antivortex pairs at TKT. Finite-array size leads to

deviations from this theoretical prediction. In particular, it causes a smearing of the jump in

a (T), in part due to nucleation of free vortices at all temperatures, T > 0

[Kadin et al., 1983], and to the logarithmic spatial interaction of vortices [Abraham, 1983].

The overall effect is a less pronounced AT transition in a finite array.

In the case of arrays with long-range interaction, we find that the transition to the

macroscopically phase-coherent state occurs at a temperature, Tc, which is very much

dependent on the actual size of the array. This dependence on size occurs because the

number of nearest-neighbors in the array continually grows with increasing array size.

Indeed, even in the limit of N -+ -, these novel arrays cannot be considered as models of

2-dimensional systems [Nelson, 1991]. Because Tc is size dependent and does not depend

on any type of vortex-antivortex interaction, we describe arrays with long-range interaction

as truly mean-field like.



CHAPTER VII

MONTE CARLO SIMULATIONS

7.1 Introduction

We have performed Monte Carlo (MC) simulations of both ordered and disordered

Josephson junction arrays with long-range interaction.1 Implementing the well known

Metropolis algorithm [Metropolis et al., 1953], we simulated free-boundary arrays of size

N x N, where N=8, 20, 30, and 50. Using our MC simulations, we calculated various

thermodynamic quantities such as the heat capacity, Cv, and phase-coherence modulus, M.

M is a measure of long-range coherence of the phases, j, of the individual wires.

This chapter is organized as follows. In Sec. 7.2, we motivate the reasons for

implementing the Metropolis algorithm in our MC simulations, and in Sec. 7.3, we outline

the actual algorithm we used. We then present our results in Sec. 7.4 and compare them

with those derived from Vinokur et al.'s analysis (1987) and from our mean field theory

[Sohn et al., 1992b].

7.2 Metropolis Algorithm2

If we have a system of N particles, each having a single degree of freedom, that can

be described by the Hamiltonian, Hy, we can calculate the thermodynamic average of an

observable, A, with the following

I The results presented in this chapter have been submitted for publication [Sohn et al., 1992b].

2Much of what is written in this section can be found in Forrester, thesis (1988). For a more thorough
review of MC methods, see Binder (1986).

111
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jdxA(x) exp(-HN(x)/kBT)

(A) = Jdx exp(-HN(x)IkBT)

D

where dx=d.xldx2...dxi (with xi describing the state of the ith particle) and the integration

is over the entire phase-space volume, D. In order to calculate Eq. (7.2.1), we can

approximate the integrals as discrete sums,

J f(x)dx -+ Xf(xv)Axv
V

where xv is a point on a regular grid. Because the system's phase space has a dimension

of N, where N- 10-1023, the above approach is completely impractical. A better approach

in solving Eq. (7.2.1) would be to choose M phase-space points at random rather than

from a regular grid [Forrester, 1988]. Here, M would be some manageable number.

Unfortunately, this process is highly inefficient since many of the M sampled points might

be"unimportant" (in the sense that the Boltzmann factor, exp(-HN/kBT), would be much

less than one).

To solve our problem, we employ the Metropolis method (Metropolis et al., 1953)

The Metropolis method is based on the idea of "importance sampling" where we choose

phase-space points according to some probability P(x) rather than choosing them at random

[Forrester, 1988]. As a result, Eq. (7.2.1) now becomes,

M
Y A(xv)P- 1 (xv)exp(-HN(xv)/kBT)

(A) p 1 ( ()k (7.2.2)
.,P-I(xv)exp(-HN(xv )/kBT)

V=1
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If we choose the probability function P(xv) to be equal to the thermal distribution,

Peq(Xv) - exp(-HN(xv)/kBT), Eq. (7.2.2) then becomes

A L .a(xv) (7.2.3)

The above is no more than a computation of arithmetic averages, but at a set of phase-space

points consistent with the "biasing" distribution.

We choose the phase-space points consistent with Peq(Xv) in the limit of M -- cc

by executing a random walk in phase-space, with the transition probability, W(xv -- Xv,')

(per unit time) for a step from Xv to xv' [Forrester, 1988]. We obey the detailed balance

condition

Peq(Xv)W(Xv --+ xv) = Peq(XV')W(Xv --+ Xv)

so that the ratio of transition probabilities for xv -+ xv' and xv' -- xv depends only on the

energy change, 8H=H(xv')-H(xv)

W(x- xV') = exp(-6H/ksT) (7.2.4)W(xV xv)

A choice of W consistent with Eq. (7.2.4) is

W(xV -. + xv') = { exp(-&I/kBT) W > 0

(7.2.5)

otherwise
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If 3H < 0 for a given step, the step to Xv' is made, and a term A(xv') is added to the sum

in Eq. (7.2.3). If, however, 8H > 0, we first compare W to z-a random variable

uniformly distributed on the interval [0,1]. If W > z, the move to Xv' is made and A(xv')

is added to the sum in Eq. (7.2.3). If W < z, the move is not made and A(x.) is once

again added to Eq. (7.2.3).

The values of the observable A are not computed after every step; rather they are

computed after a set number of steps. This is done in order to avoid subsequent terms in

the sum of Eq. (7.2.3) from being highly correlated. In addition, the values computed

during some initial interval-the time during which the system thermally equilibrates and

the biasing function P(x) approaches Peq(x)-are discarded.

7.3 Implementation of Metropolis Algorithm

As stated in the previous chapter, the Hamiltonian of our system is

H =-Re EJ ek J (7.3.1)
i=lj=l

Using Eq. (7.3. 1), we proceed on a random walk through the phase-space of our system.

This consists of making "passes" through the lattice of wires, i.e. going one-by-one over

all wires in the array, and adjusting the phase of each wire once every pass according to the

Metropolis algorithm. A "Monte Carlo step" is the adjustment of the phase of a single wire

in the lattice. Because we want to reduce the correlations in the state of the system from

one step to the next [Binder, 1986], we use a random number generator for every pass to

generate a random order of stepping through the lattice.

As summarized by Forrester (1988), the Metropolis algorithm executed for each

pass on every phase is the following
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1. Select a phase, n, and change its phase by a random amount 36n, from

On to 6n+6 6 n. The choice of 8n will be discussed below.

2. Compute SH using Eq. (7.3.1), and W=exp(-8l/kBT).

3. (a) If 3H < 0, accept the move. If desired, compute the new value of

each observable and add to corresponding sums in Eq. (7.2.3).

(b) If 8H > 0, generate a random number, z, where 0 < z < 1.

If W > z accept move. Again, if desired, compute the new value

of each observable and add to the corresponding sums,

Eq. (7.2.3).

4. Go to Step 1.

During each pass, we select a phase and change its angle 19n by some 86n as

described in Step 1. We choose 80n by the following. Before we begin any part of the

simulation, we choose a maximum phase change, 86 max. We then choose 86, randomly

from the interval [-&0max, 60max ] by computing a random number Y, from a random

variable distributed uniformly on [-1,1], and setting 8n =ybOmax. The value of 8 0max is

adjusted throughout the early stages of the random walk (usually the first 30-40 passes) so

that the acceptance rate for "uphill" moves (moves with 6H > 0) is approximately one half,

i.e.

Acceptance rate = Number of uphill successes 1 (7.3.2)
Number of uphill attempts -2

The above is necessary in order to discourage the consideration of "unlikely" moves and,

therefore, promote efficiency [Binder, 1986].3

31n other words, we discourage our system from settling into a local minimum by accepting, half of the
time, high energy moves which would "knock" the system out of a local minimum and perhaps toward a
global minimum.
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Initially, we discard the first 10,000-20,000 passes (stepping through the MC steps

without calculating the thermodynamic observables). This is done in order to allow the

system to equilibrate and to avoid correlations with the initial state of the system from

occurring. 4 After the equilibration period, we execute 20,000-30,000 averaging passes.

We calculate the thermodynamic variables after each pass rather than after each MC step in

order to reduce correlations between subsequent values of A(xv).

The calculation of the variables in which we are interested is fairly straightforward.

We calculate all quantities as a function of temperature, in which we start at a high

temperature and then anneal the system, i.e. we gradually cool the system.5 For the

highest temperature, we choose a random phase configuration as the initial condition, while

for each successive lower temperature, we use the final configuration from the previous

temperature as the input. For each temperature, we use the 61max from the previous

temperature as an initial guess for the maximum phase change. Thus, at each temperature,

we execute 10,000-20,000 equilibration passes and 20,000-30,000 averaging passes. All

MC simulations were performed on a Convex machine.6

7.4 Monte Carlo Results

7.4.1 Heat capacity, Cv

To calculate the heat capacity per wire, we used the well-known relation [Reif,

1965, p. 242),

4Forrester chose to execute 5.000-10,000 equilibration passes. These numbers are based on work by
Tobochnick and Chester (1979), Teitel and Jayaprakash (1983a), and Fernandez et al. (1986).

5At temperatures well above the unsition temperature, Tc, we cooled the system with temperature steps,
6T=5EJkB. Just above the Tc, we chose 8T=Ej/kB. For TS.Tc, we chose S°T=O.1Ej/kB.

6The use of a Convex machine was provided by the Laboratory for Computational Physics at the Naval
Research Laboratory. Washington, D.C.
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CV = (E2)-(E)2 (7.4.1)
2NkBT 2

where E is the calculated energy of the system.7 Our calculations for both the ordered and

disordered arrays, which will be presented in Secs. A and B, respectively, show that Tc is

very much dependent on the size of the array and the strength of the applied magnetic field.

A. Ordered arrays

Fig. 7.1 shows the heat capacity per wire (again, in units of kB), Cv/2NkB, of the

different-sized arrays we simulated in zero field. As can be seen in the figure, Cv/2NkB

has a pronounced peak, indicating a phase transition, at a temperature, Tc. This peak

sharpens and increases in height as we increase the size of the simulated array-a clear

indication that the system is mean-field-like as opposed to Kosterlitz-Thouless-like. 8

Comparing the simulated heat capacity curves with those derived from mean field theory,

we find that the simulated curves approach the mean-field form as N is increased (see Fig.

7.1). Since the part of the heat capacity curve which has the steepest slope (usually where

Cv is approximately half-maximum) corresponds to the discontinuous jump at Tc on the

mean-field theory curve, we take the temperature at which this occurs to be Tc. From our

MC simulations, we were able to confirm that Tc does indeed scale with N, as was

7This particular method of calculating Cv is strongly dependent on how many passes are included in the
computation. The reason for this is that the method relies on subtracting two large fluctuating quantities
and thus, the resulting Cv depends strongly on what fluctuations are included. These fluctuations are
strongest near Tc, thus making computation difficult near this temperature. One way of avoiding this
problem is to calculate Cv by differentiating the energy with respect to temperature, i.e. Cv=dE/dT
(Tobochnik and Chester. 1979).

8The behavior of Cv shows only a broad, size-independent peak in Kosterlitz-Thouless systems. See Shih
and Suoud (1984); Tobochnik-nd Chester (1979); and Forrester (1988).
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Fig. 7.1. Heat Capacity per wire, Cvl2NkB, vs. normalized temperature,
2kBTINEj, for the ordered array with long-range interaction in zero field
as calculated by Monte Carlo simulations and mean field theory. The size
of the simulated array is N x N, where N=8, 20, 30, and 50. The
transition temperature in the simulations is taken to be the temperature at
which the heat capacity curve has the steepest slope-usually where
CvI2NkB is half-maximum.
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predicted by our MIF calculations. 9 When a field, f=p/q, is present in the ordered array

system, we found that Tc=NEj/2kB'v/q (see Figs. 7.2a and b), again agreeingwith out MF

calculations.

B. Disordered arrays

To simulate disordered arrays, we have introduced disorder into our system by

randomly varying the distance, Ax, between the parallel wires of each orthogonal set.

Specifically, we have uniformly distributed the spacings by up to ±"0. lAx in the arrays we

refer to as having 10% disorder, and by up to _+0.5Ax in arrays we refer to as having 50%

disorder. Because the disorder introduced into the system is purely geometric10 and

therefore only affects the Aij term in the Hamiltonian [Eq. (7.3.1)], disordered and ordered

arrays show identical behavior in zero field.

Figs. 7.3 and 7.4 show Tc vs. f for the 10% and 50% disordered arrays,

respectively.1 1 As a basis for comparison, Tc vs. f, as derived from Vinokur et al.'s

analysis [Eq. (6.1.2)], is also shown on the same plots. As before, we can define Tc for

four different regions. For f < N , Tc=NEj/2kB. For 1< f < -
ForT- f-. N 2kB~f

This relationship is in agreement with our mean field theory analysis and with

Vinokur et al.'s first order approximation of Tc for extremely small fields, Eq. (6.1.4),

using the relationship H/Ho--fN. We note, however, that, as shown in Figs. 7.3 and 7.4,

9 1n a real physical system, an upper bound of Tc does exist, i.e. Tc<Tco, the superconducting transition
temperature of the individual wires, above which Ej=0.

10Another way of introducing disorder would be to vary the Josephson coupling strength, Ej, of each
junction in the array. We instead choose to vary the distance between the wires and keep Ej constant, as
this was originally proposed by Vinokur et al. (1987).

11 The results of the disordered arrays we present in this chapter are an average of 5 MC runs (each a
different realization of a disordered array) since we found the results of the individual simulations to be very
noisy.



120

1.6 .. .. ..

1.4 (a)

*f=O
1 (P 1 f=/2

0.8 Ao 4  0 0 o =11N 04 r 0a f=1/10
C-> 0.6 ~~4~ f=1/25

A 0  
a

0O 0

0

0A

0 0.5 1 1.5 2 2.5
2 k BT/NE j

1.2

1 (b)

0.8

0.6

0.40

0.2 0Monte Carlo
*MF Theory

0 .. .. .. .. ...... ....
0 0.1 0.2 0.3 0.4 0.5 0.6

f

Fig. 7.2. (a) Heat Capacity per wire, Cv/2NkB, vs. normalized
temperature, 2kBT/NEj, for a simulated 50 x 50 ordered array in the
presence of magnetic fields, f=0, 1/2, 1/5, 1/10, and 1/25. (b)
Comparison of Tc~flTc(O) vs. f between mean field theory and Monte
Carlo simulations.
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Fig. 7.4. Normalized transition temperature, 2kBTc/NEj, vs. field, f, for
a simulated 50% disordered 20 x 20 array. All data shown are an average
of 5 MC runs-all different disordered arrays. Tc scales with N andf in
the same it does in the 10% disordered array. However, no peak in Tc at
f-i occurs in the 50% disordered array. For comparison, Tc derived
from Vinokur et al.'s analysis [Eq. (6.1.2)] is also shown.
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it slightly differs from the exact form of Tc [Eq. (6.1.2)] predicted by Vinokur et al.

(1987). For -< f < 1, we see that Tc rises with respect tof, very much as it does in

ordered arrays for this region. This behavior was not predicted by Vinokur et al. (1987);

the exact relationship between Tc andf in this regime is unknown at the present time.

The small peak in Tc atf-1 is observable in only the 10%, and not the 50%,

disordered array. We attribute this peak, which is also found in our mean field calculations

with the same disorder (see Fig. 6.7), again to the fact that the array is not fully disordered.

Whenf>>l, we find that T¢ asymptotically approaches -0.75EjvN/kB, for both the 10%

and 50% disordered arrays. Vinokur et al. (1987) predicted that TC would asymptotically

approach (Ej VM/2kB. To see if the discrepancy between the two asymptotes was due to a

size effect, we simulated 10% and 100% 50 x 50 disordered arrays to compare with the

results on 20 x 20 arrays shown in Figs. 7.3 and 7.4. The asymptotic value of TC of these

arrays at high fields is still -0.75EjNl/kB, suggesting that size is not a crucial factor. The

consistency of our results for 10% and 50% randomness suggests that the degree of

randomness is not the source of the discrepancy. Thus, the discrepancy between the

asymptote derived by our simulations and that by Vinokur et al. (1987) is presently of

unknown origin.

7.4.2 Phase-coherence modulus, M

Using our MC simulations, we also calculated the phase-coherence modulus

(known in other systems as the magnetization modulus [Shih and Stroud, 1983 and 1984;

and Forrester, 1988]),

= (12N iY • (7.4.2)

u II
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Fig. 7.5. Normalized phase-coherence modulus, M/2N, vs. normalized
temperature, 2kBTcINEJ, for simulated arrays of size, 20 x 20, 30 x 30,

and 50 x 50, in zero field. For a comparison, the magnitude of 77,
originally shown in Fig. 6.1 and which is equivalent to the normalized
phase-coherence modulus for an infinite array in zero field, is also plotted.
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of our arrays. M is a measure of long-range coherence of the phases, (pj, in the array. At

temperatures well above Tc, M--O, indicating that the phases are completely random and not

coherent at all. Closer to Tc, M begins to increase and continues to do so until T=0. At

this temperature, M=2N (in zero field), indicating that the phases have complete long-range

coherence. Since it is not gauge-invariant, M is not a measurable quantity when a magnetic

field is present in the system.

Fig. 7.5 shows the phase-coherence modulus, M, as a function of temperature for

array sizes, N = 20, 30, and 50. As can be seen in the figure, long-range phase coherence

sets in gradually in these samples. This particular characteristic-the gradual onset of

long-range phase coherence-is very similar to that of ordered conventional arrays

[Forrester, 1988]. For T>Tc, M asymptotically approaches zero as shown in the figure.

This approach to zero is slower for smaller arrays than for large ones. In the limit of

N - co, M would equal zero for T Tc, as in the mean field plot, shown for comparison.

7.5. Summary

Through our Monte Carlo simulations, we have confirmed our mean field analysis

which was presented in Chapter VI. We have shown that the transition temperature of

arrays with long-range interaction is Tc=NEj/2kB in zero field. Once a commensurate

field, f-pfq, is present, Tc=NEj2kB q in ordered arrays. In disordered arrays, Tc is

defined for four different regions. For f < 1--Ne T < f <

Tc= Ej 1

2kB For y-: f < 1, Tc rises with f, although the exact form is presently

unknown. Finally, forf>l, Tc asymptotically approaches -0 .75Ej'A'/kB.



CHAPTER VIII

EXPERIMENTAL DETAILS AND RESULTS

OF

ARRAYS WITH LONG-RANGE INTERACTION

8.1 Introduction

In this chapter, we present the first experimental investigation of arrays with long-

range interaction.1 Our arrays consist of Nb superconducting wires separated by an

aluminum-oxide (A1203) barrier, the wires, therefore, are coupled to each other via tunnel

junctions. We have performed both dc transport and ac susceptibility measurements on

these arrays: the former, to make quantitative measurements on such non-linear properties

as the critical currents of the system, and the latter, to detect the onset of long-range phase

coherence. A description of our sample fabrication and measurement techniques can be

found in Secs. 8.2 and 8.3 of this chapter, respectively. Our results, which are presented

in Sec. 8.4, show that arrays with long-range interaction are far less simple than previous

theoretical work £Vinokur et al., 1987 and Sohn et al., 1992] would suggest.

8.2. Fabrication

8.2.1 Array parameters

As we have noted in Chapters VI and VII, in zero field, the army's transition to the

phase-coherent state is predicted to occur at a temperature, Tc - NEjf2kB, where Ej=tdic/2e

IMuch of what is presented in this chapter has been submitted for publication [Sohn et al., 1992c].

126
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and ic is the critical current of a single junction in the array. In order to satisfy the

condition, Tc < Tco, the superconducting transition temperature of the individual wires, the

product NEj cannot be too large. For our fabricated arrays, N is chosen to be large (600 or

1000) so that: (1) the macroscopic size of the array would be large enough for us to

conduct ac susceptibility measurements, and (2) slight defects and inhomogeneities would

have less effect on the basic properties of the arrays.2 Consequently, because of the

inverse relationship of N and Ej stemming from the need for Tc <Tco, ic needs to be

extremely small, ic < 0.6 nA. One way of experimentally achieving this is to employ

runnel junctions, and in fact, we use Nb-A120 3-Nb junctions. By controlling the thickness

of the oxide layer in our junctions, we can in turn control the ic in our arrays--the thicker

the oxide, the smaller the ic. We note, however, that the smallest ic we have been able to

achieve is -I ;A, approximately 1000 times larger than our theoretical target.

8.2.2 Mask design

The design and fabrication of arrays with long-range interaction are quite different

from those of the SNS arrays we had previously discussed in Chapter II. For both the

ordered and disordered arrays, we need two masks---each of which corresponds to one of

the two orthogonal sets of wires in an array (see Fig. 8.1).3, 4 The two ordered array

masks each contain a set of N parallel lines, where N=600 or 1000. The lines are evenly

2Originally, our arrays were of size 10 x 10, with a lattice constant of 10 Pun. To measure one of these
arrays, we fabricated three 10 x 10 arrays--each of which consisted of the smaller 10 x 10 arrays with long-
range interaction-very close to each other. The three "big" arrays were then large enough to fit under the
coils we used for our ac susceptibility measurements. This design was abandoned for a more favorable one
which will be described in the following section.

3 A11 masks used were made by Micromask, Inc., Sunnyvale, CA.

4 Although each mask contained only a set of parallel lines, the line widths in each are so narrow (2.5 ;1m)
that it is nearly impossible to use only one mask and simply rotate it ninety degrees with respect to itself
without having appropriate alignment markers. Hence, we really need two different masks which are
onhogonal to each other and have alignment markers.
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(a)

(b)

Fig. 8.1. Schematic drawing of the two ordered array masks. Each
mask, (a) and (b) contains N=600 or 1000 lines with each line being
2.5 pim wide. The lattice constant, Ax, is either 5.5 pm or 10 Jim. Some
lines, as shown, art longer than the others and have pads attached to
them. These wires serve as the current-feed and voltage electrodes of the
array. The two masks, overlaid on top of one another, will form an array
and two single junctions.
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spaced with a lattice constant, Ax, of either 10 pgm or 5.5 gm, respectively. The

corresponding macroscopic size of the ordered arrays is therefore either 6 x 6 mm2 or

5.5 x 5.5 mm 2. The two disordered array masks each contained N=600 lines which are

normally distributed with a mean spacing, A , of 10 pm and a standard deviation, aox, of

2 gm. Hence, the overall macroscopic size of these arrays is 6 x 6 mm2 . We have

included two single lines, which are apart from the set of lines that will eventually become

the array, in every mask. These lines, when crossed with their mates from the other

masks, will form single junctions with which we will use to estimate ic of the junctions in

the array (to be discussed below). All lines are 2.5 pim wide, making the fabricated

junctions of size, 2.5 x 2.5 .m2.

Because of the novel array configuration, "busbar" electrodes on two opposing

edges of the array to feed in a uniform bias current are not included in the overall design of

the array, as they are in conventional arrays (see Chapter II). This is because such busbars

would be shorted together by the superconducting wires of one set, and consequently, the

N2 individual junctions would not play any role in the dynamics of the system. Likewise,

busbars on two perpendicular array edges are not included since each busbar would short

the wires of its set, effectively transforming the entire array into one very large Josephson

junction. Thus, in order to perform any kind of dc measurements on our fabricated arrays,

we have made some of the lines in our mask much longer than the others and have attached

pads to them. These particular wires serve as the current-feed and voltage electrodes of the

array.

8.2.3 Sample fabrication

As stated in the introduction of this chapter, we chose to fabricate our arrays with

SIS junctions in order to achieve very small critical currents. Originally, our arrays

consisted of a set of Nb wires and a set of Pb wires. A native Nb oxide, NbOx separated
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the two orthogonal sets of wires, and thus, the wires were coupled by Nb-NbOx-Pb

junctions. We used Nb and Pb because the techniques by which we could fabricate

Nb-NbOx-Pb junctions were well-documented in the literature. 5 We sputtered 2000 A of

NTb onto a previously patterned substrate (the actual method of patterning the substrates will

be discussed below). We then oxidized the Nb layer by exposing the sample to air for 1/2

day. Following a lift-off and repatterning, we thermally evaporated a thin layer of Pb

(500 A) on to the sample. Pb, instead of Nb, was used because it is a soft metal and the

process by which it can be deposited is very "gentle," i.e. thermal evaporation is far less

harsh on a native oxide layer than is sputtering since relatively little heat is produced.

Although this method of fabricating the arrays was extremely quick, it soon became

apparent that another type of oxide-barrier and superconducting material, other than Pb,

were needed. The reasons for this were the following. First, the arrays were not at all

recyclable because of the Pb.6 Second, some Nb oxides are known to be conductive which

can lead to especially "leaky" SIS junctions [.aibowitz, 1970]. By naturally oxidizing our

Nb film, we had no way of controlling the type of oxide that would form on our sample.

Third, by exposing the film directly to air, we introduced all different kinds of

contaminants to the Nb film

Nb-A1203-Nb SIS junctions were finally chosen to make up our arrays since they

are known to be extremely robust and recyclable [Huggins and Gurvitch, 1985 and

Morohashi et al., 1985 and 1987]. However, we are unable to fabricate ideally the Nb-

A120 3-Nb junctions in our arrays, i.e. by fabricating a Nb-A12 0 3 -Nb trilayer in situ and

reactive-ion etching the Nb to create the junctions [Huggins and Gurvitch, 1985). This is

because our unique array geomeu-y requires that the Josephson junctions interconnect all

the array wires. Instead, we find that we must fabricate the junctions in several steps

5See for instance, Schwidtal (1972) and Basavaiah et al. (1976).

6We did attempt to coat our samples with G.E. varnish as Schwidtal (1972) had done to seal the sample
from air, however, we simply didnot find this to be a satisfactory process.



131

which are not in situ: this lowers the quality of the junctions that is achievable. We outline

the specific fabrication steps below. 7

Because the lines to be fabricated are so densely packed, a regular trilayer of

photoresist-aluminum-photoresist 8 cannot be used to create the usual undercut necessary

for sharply defined edges of the deposited metal. The reason for this is that the developer

does not evenly develop the exposed photoresist in this geometry. This uneven developing

causes some lines to be much wider than others. To avoid this, we used a chlorobenzene

technique to create the undercut (see Fig. 8.2). Following the protocol developed by

Johnson (1990), 9 we initially bake a layer of photoresist onto a polished oxidized silicon

wafer. We then soak the substrate in chlorobenzene which "hardens" (actually, it

polymerizes) the top layer of the photoresist so that the developer needs a longer time to

develop this top layer than it does to develop the untouched bottom layer. We finally

expose the substrate to the line mask using the Karl Suss Mask Aligner and develop it. The

undercut that is created using this technique is barely visible under the highest

magnification (660x) of a microscope.

After patterning, we mount the substrate in the magnetron sputtering chamber.

After rf cleaning the substrate, we sputter 2000 A of Nb onto the sample. The sample is

then removed from the chamber and undergoes a liftoff and repatterning. Afterwards, the

sample is once again mounted in the sputtering chamber. Because a thin layer of NbOx

inevitably forms on top of the Nb film when the sample is originally exposed to air, the

sample is rf cleaned in order to remove this top layer of oxide. Once this is done, we

sputter Al onto it. In our first attempts to form the aluminum-oxide layer, we

7For a detailed description of the fabrication process; see Appendix IL

8 See Chapter I.

9 See Appendix IV for a fUl outline of this potocol and another one which creates larger undercuts.
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Fig. 8.2. Outline of the chlorobenzene process which is used to create
small undercuts.
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sputtered 46 A of aluminum onto the substrate.1 0 We then oxidized the sample in a pure

oxygen bath for various times and pressures.11 Finally, we sputtered an additional 2000 A

Nb, in situ, onto the sample.

From our initial tests, we found that our fabricated junctions had extremely large

critical currents (tens of microamperes) and were very leaky. We hypothesized that this

was most likely due to some Al diffusing down into the Nb underlayer. Diffusion of this

kind is caused by the sample overheating during the sputtering process [Huggins and

Gurvitch, 1985 and Martinis and Ono, 1990]. Evidence that our own samples were

overheating is that the Nb film often looked cloudy (an indication that the underlying

photoresist burned) or cracked (an indication of heat stress with the underlying

photoresist).

To improve the quality of our junctions, we altered the method by which we created

the oxide-barrier. More importantly, however, we heat sunk the sample in the sputtering

chamber better by sparingly applying Apiezon Thermal Grease H between the substrate and

the water-cooled substrate holder. After rf cleaning the substrate, again to remove possible

Nb oxides from the surface of the film, we sputter only 26 A of Al and oxidize the sample

at 500 mTorr for 10 minutes. An additional 26 A of Al is then sputtered onto the oxide

layer and oxidized at 500 mTorr for 35 minutes. This two step aluminum/oxidation

process is necessary to ensure a much thicker oxide-barrier than the self-limiting barrier

(10-15 A) and hence junctions with smaller critical currents. In addition, the two step

process prevents our sample from overheating. Following oxidation, we sputter, in situ,

an additional layer (2000 A) of Nb onto the sample to thus create our counterelectrodes. A

simple lift-off is then performed and our sample is diced. A schematic drawing of the array

10Huggins and Gurvitch (1985) suggest working with an Al layer of thickness dAIp50 A since anything
less would result in the oxide barrier containing possible Nb oxides. Higher leakage would therefore occur
in the junction.

I ISee Appendix IIl for a listing of critical current densities obtained from changing the 02 pressure and
oxidation times.
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is shown in Fig. 8.3 and SEM photographs of both the ordered and disordered arrays are

shown in Figs. 8.4 and 8.5.

8.3 Measurement Techniques

8.3.1 DC measurements

The rig we use to measure our samples is the very same one outlined in Chapter I.

We have, however, made some modifications. Specifically, we have attached 1 kfl

resistors to the current and voltage leads. These resistors, nominally at the sample

temperature, help to filter room temperature noise. With this modified rig, we perform

two-point probe measurements, in the sense that separate voltage and current leads go

down to the same pad, on our fabricated arrays. 12 (Four-point probe measurements,

however, are performed on the single junctions). Two different lead configurations are

tried on each of the arrays. 13 In orientation A (Fig. 8.6a), the current is injected into one

wire and extracted from another in the same set. In orientation B (Fig. 8.6b), the current is

injected into one wire in one set and extracted from a wire in the other set. An HP 6177A

DC power supply, rather than a Lake Shore Cryotronics Temperature Controller, is used to

power the heater that controls the temperature in our dc measurements, since the latter can

send noise down to our sample and "smear" the I-V curves. To minimize electrical noise

generation, data, like those from the SNS arrays, are initially plotted on an HP 7045B

analog XY recorder and then digitized for computer analysis. For reasons to be described

12We did anempt to perform four-point measurements on our arrays; however, we obtained some rather
bizarre results. For example, when we measured the normal state resistances of some of our arrays below
Tco, we found that they were apparendy negative! We atribute this phenomenon to defects which cause the
currents in the array to flow along indirect paths, thereby reversing the sign of the potential between the
two voltage pads we were measuring.
13As in the SNS arrays.the voltage and curat leads of these arrays are attached using pressed indium dots.
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Fig. 8.4. SEM picture of an actual ordered array with long-range
interaction. The lattice constant of the array is 5.5 gtm and the junction
size is 2.5 x 2.5 pgm 2.
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Fig. 8.5. SEM picture of an actual disordered array with long-range
interaction. The wires are normally distributed with an average lattice
constant of 10 g.m and a standard deviation of 2 4im. The junction size is
2.5 x 2.5 jim2 .
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Fig. 8.6. The two different current-feed orientations we tried. (a)
Current-feed orientation A: the current is injected into one wire of one set
and extracted from another of the same set. (b) Current-feed orientation
B: the current is injected into one wire of one set and extracted from a
wieof the other set.
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in Sec. 8.4.1, a Tektrorx 2225 50 MHz oscilloscope is also used to record data from our

arrays.

8.3.2 AC measurements

To conduct contactless ac measurements, we use a two-coil mutual-inductance

technique similar to that outlined by Jeanneret et al. (1989). Our main measurement

apparatus consists of a drive coil of radius Rd--0.42 cm and a pair of astatically wound

receive coils of radius Rr=0.24 cm which is coaxially mounted within the drive coil (see

Fig. 8.7).14 Using 40 gauge Cu wire, we carefully wound the coils such that all the turns

in the coils are equally spaced. While the drive coil consists of a single layer of Nd-23

turns, the receive coils each consist of two layers of Nr,-15 turns.15 The field produced by

the drive coil at the sample is calculated to be -45 gGauss/pA. We balance the coils using

a PAR 124A lock-in amplifier with a PAR 116 preamplifier at the input. Once the receive

coils are balanced, we tighten the screw at the top of the drive coil to lock the two sets of

coils together.

The two-coil apparatus is then placed in a teflon holder designed by

M. S. Rzchowski of this group and mounted directly over the sample with a thin sheet of

mylar (thickness=14 jim) separating the two (see Fig. 8.8). The mylar is used to prevent

the sample from being scratched. We note that the entire apparatus is designed such that

the coils are approximately 0.5 mm away from the sample. Ideally, one would like to have

the receive coils to be as close to the sample as possible. 16 The vacuum can, as described

in Chapter II, is placed over the sample and the rig is placed in the temperature-controlled,

14The coil shafts were machined from the material, KEL-F.

15Two layers in each of the receive coils are used to increase the sensitivity of the coils.
16Jeanneret et al. (1989) state that the drive coil-sample distance in their apparatus was AO=.2 mm, and
the receive coil-sample distance &r-30 W.
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Fig. 8.7. Schematic drawing of the two-coil mututal-inductance apparatus
we used to perform ac: susceptibility measurements on our arrays. The
pair of astatically wound receive coils is coaxially mounted within the
drive ooil as shown.
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Fig. 8.8. Schematic drawing of the actual setup we use to perform our ac
measurements. A thin mylar film is placed between the coils and the array
so that the latter will not be scratched.
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i.-metal shielded 4He cryostat. The in-phase and out-phase components of the voltage,

8V1,17 at the receive coil due to the screening current flowing through the sample in

response to an ac current are detected by conventional lock-in techniques.

All of the ac measurement results we present in this chapter are from measurements

taken in the frequency range of 80-100 kHz, since we achieved maximum signal output in

this range. [However, we have conducted some of our ac measurements at frequencies as

low as 10 kHz with similar results, but at lower signal/noise ratio.] Although such high

frequencies are out of the range of ideal PAR 116 1:100 transformer performance, we

nonetheless use the transformer for all our measurements in order to rid ourselves of

ground-loops. While it increases the signal voltage by only a factor of -3, the transformer,

at 100 kHz, does not distort our signals. 18

8.4 Results

8.4.1 DC measurements

All the single junctions we fabricated concurrently with our arrays have normal state

resistances, rn, of approximately 670 Q, and critical currents, ic, ranging from 0.45 to 1.5

liA at T=1.7 K. (The icrn products of these junctions, therefore, range from 0.3 to

1.0 mV, compared to the ideal value of icorn-,T4(T)/2e=2.5 mV where ico is the intrinsic

17The signal voltage, 8V, can be written as

N1 = iWdw f0 xf M(x)
I + (24ohXl/ioG)x

where xf-hqt, with h equal to the sum of the distances the receive and drive coils are from the sample, and qt
being the in-plane component of the Fourier transform of r, the variable upon which the sample's sheet
current density is dependent. M(x) is the mutual-inductance distribution resulting from the geometry of the
measuring system. See Jeanneret et al. (1989) for specific details on the derivation of this equation.
18We tested this by using a square-wave signal as our input signal. For a given high frequency, we found
that the signal was not distxed
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critical current derived from microscopic theory, and A(T) is the temperature-dependent

energy gap of the superconductor [Ambegaokar and Baratoff, 1963]). In addition, all the

junctions appear to be resistively-shunted. Fig. 8.9 shows a representative I-V curve of

one of the single junctions we measured; the junction is clearly non-hysteretic. Compare

this I-V curve with those in Figs. 8. 10a-c. These I-V curves are from test junctions we

made while we were determining the appropriate fabrication recipe for our arrays.

Fig. 8.10a is from a test junction which was fabricated using the recipe we have just

outlined in the previous section. Figs. 8. 1Ob and c are from test junctions which were

fabricated using two other recipes. 19 The I-V curves of these junctions show

superconducting gaps, 2A/e, ranging from 0.85 to 2.5 mV, and icrn products ranging from

0.03-1.5 mV; one curve (Fig. 8.10c) even shows hysteresis. We note that the rather poor

quality of the array junctions, as indicated by the single junctions fabricated concurrently

with the arrays, should not drastically affect the arrays' properties since they are mainly

determined by the magnitude of ic. It is clear, however, that the ic values obtained (even at

T=4 K where we have measured ic to be as small as 0.08 .LA) are -100-1000 times larger

than the nA range required to conform to our theoretical target

Upon measuring the arrays in current-feed orientation A, we find that the array

critical currents, 4c, range from 11.5 to 33.0 gA at T=l.7 K. In the current-feed

orientation B, Ic ranges from 2 to 5 ;A. The range of Ic values we obtained for either

current-feed orientation is far less than the Ic=Nic -1 mA values we had anticipated from

having N (-1000) junctions, each with critical current ic (-1 gA), in parallel. More

striking is the fact that we found that both the ordered and disordered arrays show

hysteretic behavior (Figs. 8.1 la and b) even though they each consist of non-hysteretic

junctions. Sweeping the dc current up and down, we observe that the arrays produce a

19 See Appendix MI.
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Fig. 8.9. Representative I-V curve obtained at T=1.7 K from one of our
fabricated single junctions. The critical current, ic, of the nonhysteretic
junction is 0.45 liA and the normal state resistance, rn, is 670 fQ.
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Fig. 8.10. Representative I-V curves obtained at T= 4.2 K from three differently
fabricated single Nb-A1203-Nb junctions (size: 2.5 ji x 2.5 gim). (a) The non-
hysteretic junction was fabricated in the same manner described in Section 8.2.2. The
critical current, ic, is approximately 0.2 jiA, the normal state resistance, rn, is 150 Q, and
the superconducting gap, 2le, is 2.5 mV. (b) The non-hysteretic junction was
fabricated by oxidizing the Al layer at 1000 mTorr for 60 min (See Appendix III). For
this junction, ic=16 pA, rn=7 Q, and 2A/e--0.9 mV. (c, next page) The hysteretic
junction was fabricated by oxidizing the Al layer at 150 mTorr for 30 min (See
Appendix fI). For this junction, ic=O. 15 mA, rn=10 Q, and 24/e=2.5 mV. The "kink"
in the I-V curves just above the superconducting gap is common to Nb-A120 3-Nb and
especially, to Nb-NbOx-Pb junctions. It is due to a proximity effect of a normal layer on
the niobium surface which consequently leads to the broadening of the density states of
the two superconductors that make up the junction [see Paterno et al., 1975, and
Nordman and Houck, 1978].
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Fig. 8.11. I-V curves obtained at T=1.7 K from the two different current-
feed orientations shown in Fig. 8.6. (a) I-V curve for current-feed

orientation A. Ic=11.3 MLA and RI=35 Q. (b, next page) I-V curve for
current-feed orientation B. Inset: Magnification of the region near the

origin. Ic=5 A and Rj=71 Q. All curves show hysteresis and step-like
structure.



148

.00

C) 0

Id, I

0AI



149

range of critical, Ic, and retrapping, Ir, currents (see inset to Fig. 8.11b). 2 0 This

premature switching might be due to possible thermal activation processes [Fulton and

Dunkleberger, 1974], though it is more likely due to trapped flux or noise, since none of

the single junctions show any signs of premature switching.

The observation of voltage "steps" in both the critical- and retrapping-current

portions of the array I-V curves is surprising. As shown in Fig. 8.1 lb, the steps along the

upsweep portion of the curves are much more visible than those along the downsweep

portion. Premature switching from one step to another is again observed (see inset to Fig.

8.11b). Comparing the I-V curves resulting from the two different current-feed

orientations (Fig. 8.6a and b), we observe many more steps when current is fed in

orientation B, i.e. where the current is injected in one wire of one set and extracted from a

wire of the other set. However, curves derived from both current-feed orientations show a

decrease in the number of steps as the temperature is increased. We note that the

resistance, RI, of the array after the first step is 35 Q when the current is injected in and

extracted from wires of the same set (Fig. 8.11 a) and that it is R=71 Q when the current is

injected in one wire of one set and extracted from a wire of the other set (Fig. 8.1 lb, inset).

The reason for the 2:1 ratio of these R1 values is not well understood at present.

If we zero-field cool (ZFC) the ordered arrays in current-feed orientation B, we find

that Ic is dramatically affected when a field is subsequently applied. For each ZFC run, we

changed the field strength with the overall effect that Ic periodically oscillates with respect

to field strength (see Fig. 8.12) and equals zero for O >0.27. We note that the period of

oscillation Ic undergoes corresponds to an area of -400 gm2-the significance of this will

be discussed in Chapter IX. Unlike those of the ordered arrays, the critical currents of

disordered arrays do not show any visible oscillation with varying field strengths; rather,

20Because of this premature switching of Ic, we.used an oscilloscope to take an average of jc.
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they show a constant non-zero value with respect to the different field strengths we tried

(fromf=0 up to-f=5.75).

8.4.2 AC measurements

As stated previously, the ac susceptibility results presented in this chapter were

obtained by using a frequency range of 80-100 kHz. The ac current amplitude, ID.), used

was on the order of microamperes. [This translates to fields of 10-100 gGauss being

produced at the sample. Such fields are small enough for the sample to give a linear

response, in the sense that doubling the drive, IDoo doubles the sample's response, oV(cO).

We have confirmed this experimentally.]

In neither the ordered nor the disordered arrays, do we observe any feature at the

superconducting transition of Nb (which, for our films occurs at -8.8 K). The individual

Nb wires give a negligible diamagnetic response to the ac field because of their very small

dimensions. We do, however, observe a strong signal, corresponding to the array's

broadened phase transition to a macroscopically phase-coherent state, at temperatures

which range from 3 to 5 K, depending on the sample (see Fig. 8.13a and b).2 1, 22 A

magnetic field (f=lfq, where q=2, 3, 4, 5, 6) applied to the ordered arrays leads to a

marked effect on the transition temperature, Tc.2 3 As shown in Fig. 8.14, small fields

(i.e., large q) suppress Tc much more than do large fields (i.e., small q). This qualitative

behavior corresponds well with that predicted by mean field theory [Sohn et al., 1992b]

which is also plotted in Fig. 8.14, but the observed effect is only about a quarter as large as

2 1Because a measured array has a broadened transition (usually over I K-1.5 K), we define Tc as the
temperature at which the slope of the nasition signal is steepest.

22We measured a Tc of 4 K for the 10 x 10 arrays described in Footnote (1). The critical current, ic, of a
single junction in these arrays was -7 pA.

23We calibrate the fields by varying the magnetic field and measuring the array's ac response. This will be
further discussed below.
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Fig. 8.13. AC response vs. temperature for the (a) 0 00 00ordered

and (b) 600 x 600 disordered array. x' and Z" are the components of the
measuredl signal which are in- and out-of-phase relative to the reference
phase (giving a pure in-phase signal in the normal state). The ac amplitudeused to makespe measurement was 0.5 pA for the ordered array and 0.25

pA for the disordered array; the frequency used was 100 kHz. The strong
signal at T-4 K in both arrays indicates the arrays' transition to the
macroscopically phase-coherent state.
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Fig. 8.14. Normalized transition temperature, Tc(f)lTc(O), vs. number of
flux quantaf, per unit cell for (a) our data obtained from a 1000 x 1000
ordered array and (b) our results from mean field theory. The data
corresponds to fields f-1/q, where q=2, 3,4, 5, 6.
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the ideal prediction. Although we have not directly measured Tc for incommensurate

fields, we expect that Tc(f) is a continuous function with much substructure.

The Tc of disordered arrays, on the other hand, is not observed to be affected by a

magnetic field, even between H=0 and H*O, and whether zero-field-cooled (ZFC) or field-

cooled (FC). This surprising observation is contrary to that theoretically predicted by

Vinokur et al. (1987) and by us (Sohn et al., 1992b). One possible explanation is that,

even in nominally zero field, an inhomogeneous stray field may be large enough to cause

the array to be in the high field, constant Tc, regime of a disordered array. This regime, as

defined by theory [Vinokur et al., 1987 and Sohn et al., 1992b], corresponds to H>Ho,

where Ho is again the field value giving one flux quantum through an average-sized strip

between two adjacent wires, orfi/N. For our disordered arrays, Ho is only 0.3 mGauss!

Thus, if an inhomogeneous stray field were present that could not be nulled everywhere to

< 0.3 mGauss, the array would be in the high field, constant Tc, regime. This seems not

implausible since an average stray field of up to 0.8 mGauss before nulling was observed.

If we vary the transverse magnetic field at temperatures near the transition, we find

that the ac response, 8V(7), of the the ordered arrays, like that of conventional arrays

[Martinoli et al., 1987], shows a complex oscillatory behavior. Figs. 8.15a-c show plots

of the ac response vs. field. Here, we see that strong peaks in both the in-phase and out-

phase components of the signal develop as we decrease the temperature from just above Tc

to just below. 24  These peaks correspond to commensurate field strengths,

f=0, 1/2, 1/3, ..., 1/8. As shown in Fig. 8.16, only a single peak corresponding tof=0

appears in our disordered array data. The disordered arrays do not show any

commensurability with the range of the applied fields we tried. This result is qualitatively

consistent with the fact that the cell size in the lattice varies too much for any non-zero field

to be commensurate with the array lattice.

24The in-phase and out-phase components of our signal are with respect to the reference phase which gives
a pure in-phase signal in the normal state. No corrections are made for any temperature dependence of the
entire circuit.
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Fig. 8.15. Real and imaginary components of the complex ac response of a
1000 x 1000 ordered array to a varying magnetic field. The data were taken
at (a) T=4.25 K, (b) T=3.75 K, (c) T=3.5 K As temperature is decreased
from just above Tc (which for this array is -4 K) to well below Tc, the
number of peaks increases. These peaks correspond to array
commensurability with field strengths, f=O, 1/2, 1/3, ..., 1/8. The
frequency and excitation current used were 100 kHz and 2.1 piA,
respectively.
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Fig. 8.16. Complex ac response of a 600 x 600 disordered array to a
varying magnetic field. Only one peak, corresponding tof=O is observed.
The TC of the array was 5.0 K and the data shown were taken at T--4.75 K.
The frequency and excitation current used were 87.0 kHz and 0.5 pA,
respectively.
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8.5 Summary

We have fabricated and measured both ordered and disordered arrays with long-

range interaction using Nb filaments and an A1203 barrier. Our ac susceptibility

measurements show a strong feature, corresponding to a transition to the macroscopically

phase-coherent state, at T-4 K. This feature is very much field-sensitive in ordered arrays,

but, contrary to expectations, appears to befield-insensitive in disordered arrays. Our dc

transport measurements reveal that these arrays have critical currents which are much less

than the critical currents we expected from having N junctions in parallel in the array. In

addition, they reveal that the arrays are hysteretic despite the fact that they consist of

non-hysteretic junctions. Lastly, the dc measurements show that the arrays have voltage

steps in their I-V curves. We discuss these results and their importance in the following

chapter.



CHAPTER IX

DISCUSSION ON ARRAYS

WITH LONG-RANGE INTERACTION

9.1 Introduction

Given our experimental results presented in Chapter VIII, it is evident that the

properties of arrays with long-range interaction are not as straightforward as theoretical

work had originally suggested [Vinokur et al., 1987 and Sohn et al., 1992b). As was

shown, the zero-field critical current, Ic, of the arrays is much less than the predicted value

of Nic. [Again, this elementary prediction comes from the fact that there are N junctions in

parallel which take current from the wire into which current is originally fed.] In addition,

we observed our arrays undergoing the phase transition at Tc-4 K, despite the fact the our

ic is -100 times greater than that required to obtain that Tc from the theoretical model

[Vinokur et al., 1987 and Sohn et al., 1992b]. Obviously, we must refine this theoretical

model to account for these major discrepancies.

In this chapter, 1 we show that the electromagnetic inductance of an array wire is

comparable to the Josephson inductance of the junctions. Consequently, there is a current-

induced variation of the phase along any given wire in the array. We then discuss the many

unusual dc properties our arrays have, including voltage steps in their I-V curves and

hysteresis (despite the fact that they are composed of non-hysteretic junctions). Finally, we

qualitatively explain our ac measurements.

1Much of what is written in the chapter has been submitted for publication [Sohn et al., 1992c].

158
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9.2 DC Measurements

Vinokur et al.'s (1987) and our [Sohn et al., 1992b] assumption was that the

kinetic and electromagnetic inductance of the wires connecting adjacent junctions are

negligible compared to the Josephson inductance (/2eic) of each junction in the array.

Consequently, for any circulating current flowing through the array of weak Josephson

junctions, the phase gradient along any wire in the array should arise only from the

presence of an external magnetic field. The Hamiltonian describing this system is given by

the sum of individual Josephson-junction energies,

N N
H =-Re Ej expi(ph-ev -A--) (9.2.1)

i=Ij=1

Here, again, 7ih is the superconducting phase at x--O of the ith horizontal wire, is the

phase aty--O of the jh vertical wire, and Aj = - jA.d" where A = Hx and 00o is one

flux quantum. As will be shown below, this assumption-that the phase gradient along

any wire in the array arises only from the the presence of a magnetic field-is incorrect

when dealing with our experimental system.

9.2.1 Model for critical currents2

For the dc bias case, in which we are feeding current into one wire and out another

of the same set (current-feed orientation A; see Fig. 8.6a), the action is dominated by the

spreading of the current from the feed wire into N-1000 cross wires. Since the current

2This model was developed by M. Tinkham (1992).
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spreads so widely, thus causing much smaller phase gradients in the cross wires, we can

get most of our results from only the phase along the current-fed wire, treating the cross

wires as having the same zero phase. The phase difference between cross-wires n and n+1

along the current-fed wire in an array is (21rJn1OO)Lw, where In is the current flowing

through the wire at the nth junction site and Lw is the inductance (either kinetic or

electromagnetic) of the wire segment in a cell defined by the cross wires, the current-fed

wire and the wire parallel to it (see Fig. 9.1). In the simple case of a small number of

extremely weak Josephson junctions in an array, In is small, because not much current is

needed to reach the critical current of the junctions. Consequently, the phase gradient along

the current-fed wire is small and Ic=Nic. However, in the case of a large number of

stronger Josephson junctions, In can be quite large. This is because a huge current is

needed to reach the critical current of all the junctions. As a result, the phase gradient along

the current-fed wire can no longer be ignored. It is this current-induced phase shift along

the wire which limits the effective number of junctions in parallel to some Neff<<N. This

leads to Ic=Nefflc, and an explanation of why Ic is far less than we had expected.

We can estimate Neff by ignoring the small phase gradients which result from the

spreading of the current through the array everywhere except along the current-fed wire.

From the above, we have,

dpn = 2WrnLw (9.2.2)
dn - 0o-

Taking the derivative of Eq. (9.2.2), and noting that dln/dn=Icsinpn (if we can neglect the

phase gradients in the cross wires) we obtain the Sine-Gordon Equation,

d2 fn -Lsin 'n
== ;29.2.

, n I In
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n+1 N-~

Fig. 9. 1. Schematic drawing of a section of an arry in which dc current
is being fed into a wire.
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where (/2)=(2xrLwic/o)~flL. Note that Eq. (9.2.3) has the same form as the familiar

pendulum equation. For small phase differences, i.e. I << Ic, and (Pn <<1, we can

linearize Eq. (9.2.3) to get

d2 97n = (Pn

dn2  A2 (9.2.4)
n

This has the solution, 97 ~e-lAn. If An << N, this implies that the current will leak off

the current-fed wire before getting very far from the input. Then, if (p is the applied phase,

we have (pn =qpe- nl A n and total current

I = ic 1 sin Pn - ic I 9)n = icP-In (9.2.5)

The total phase difference, including the symmetric part of 4p from the exit current wire, is

2co=got, so in the linear regime

dl 1 Xi
d- tot 2" n c(9.2.6)

or

N2efLwic (9.2.7)

To find Ic of the array, we need to return to the nonlinear equation Eq. (9.2.3) since

we want to consider the case where IN is no longer small. The maximum current

corresponds to an applied (p-f (not r/2). Drawing an analogy to a pendulum and the

angular velocity it needs to move to an upward vertical position, "-, obtain for our system,
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n

where (pno is the initial phase. If we recall Eq. (9.2.2), (d(pnIdn)=(2rInLw(o), then it is

easy to see that

I = Afnic 2(1 -cos () (9.2.10)

For (ptot=2qp,

I(tot)=Anic 2(1 -cos-- (9.2.11)

and

Imax = I(27r) = 2nic = 2 * (9.2.12)

As a check, if we let qtor<<l, Eq. (9.2.11) becomes Eq. (9.2.6). Note that by this

criterion, Neff=2).n, as opposed to (An'2) found in Eq. (9.2.7).

To see how our calculation for Ic compares with our experimental data, we first

calculate the total inductance, Lw=Lem + Lkin, of an array wire. We estimate the

electromagnetic inductance, Lem, using the following

Lem 21[ln-1+l+0.1118P]xl0 - 7 HLentP
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where I is the length and p is the perimeter (2d + 2w, where d is the thickness and w is the

width) of the given wire [Bleil, 1982, p. 5-29]. For our specific dimensions,

Lem - 2.2 x 10-12 H. We estimate the kinetic inductance, Lkin, using the definition

Lin = ~t,2 I

where A is the penetration depth of Nb and or is the cross sectional area of the wire

[Kim, 1989]. For our wires, Lkin = 2.1 x 10-14 H. Since Lem greatly exceeds Lkin,

LwLem. We next insert Lw and the different measured ic's into Eq. (9.2.12). What we

find is that the predicted lc is a slight overestimate of our experimentally observed Ic. This

overestimate may result from crudeness in the model, or it may be explained by a noting

that in the parallel problem of HcI in a long Josephson junction, the above solution actually

describes a metastable state, with thermodynamic stability only up to a field (2/yr) times the

corresponding value for HcI (Tinkham, 1975, p. 201]. Applying that factor of 2/;r here,

we might expect to see "premature switching" becoming prominent at the lower value,

44 0 cJ

=C c r N21rLw (9.2.13)

As shown in Fig. 9.2, the values for Ic obtained from Eq. (9.2.13) are in surprisingly

good agreement with those observed from our arrays.

As stated earlier, the theoretical results obtained by Vinokur et al. (1987) and us

[Sohn et al., 1992b], are for wires whose geometrical inductances are so small that, in zero

field, there is no phase gradient along them. What we have just shown is that the

electromagnetic inductance (10-12 H) is not completely negligible compared to the

Josephson inductance (-10 - 9 H) of the junctions in the array. Consequently, to be

realistic, a finite ratio of these two inductances must be included as an additional parameter
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Fig. 9.2. Comparison between obtained data and our calculation of the
critical current, Ic, of an array.
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for the variation of the phase along a wire. Such an inclusion leads to a Sine-Gordon

equation [Eq. (9.2.3)] that has a characteristic dimensionless length scale, An, given by the

square root of the inductance ratio. For our arrays, Xn -46 at Tc (where ic-0.08 gA) and

-20 at T=1.7 K (where ic-0.45 h±A). Consequently, the effective number of junctions,

Neff, coupled to the current-fed wire, is not 1000; rather, it is [using Eq. (9.2.13)]

Ic/ic--4An/ir -59 at Tc and -25 at T- 1.7 K. Our analytical result, that Neff=c/ic_-4)Xiz, is

further supported by the fact that the resistance of the first step, RI, in Fig. 8.1 la measured

at 1.7 K corresponds to approximately 25 junctions--each with rn-670 91-in parallel.

The behavior of the array in the dc bias case in which current is injected into one

wire of one set and extracted from a wire of the other set (current-feed configuration B) is

much more complicated than the case we have just discussed. Suffice it to say, however,

that the number of junctions in parallel which contribute to the critical current, Ic , of the

array is also some effective number, N <<N, where N IffNeff . As indicated in the
eff ~ ,eff

inset of Fig. 8.1 lb, Ic-5 p-A and RI-71 91. These values correspond to approximately 11

junctions in parallel. This number for Neff can be related to the data we obtained by

measuring Ic vs. field (see Fig. 8.12). As we have already noted, one period of oscillation

in this figure corresponds to an area of 400 p m2 or an 11 unit cel x I unit cell "block."

Thus, there is a reasonable degree of internal consistency in all of our dc measurements.

9.2.2 Voltage steps

The steps in the array I-V curves are thought to be a result of the unique geometry

of the arrays. For the case of dc bias current being fed into one wire and out another of the

same set (current-feed orientation A), the current mostly flows along the primary current-

fed wire until the critical current, ic=4icn/z, of Neff paralel junctions is reached and they

switch into the resistive state. The current then mostly spreads along the cross (with
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respect to the primary current-fed wire) wires until at the critical current corresponding to

the second step in the I-V curve, a second set of parallel junctions (which are in series with

the Neff normal junctions) is reached. [This second set could be those at the other feed

wire.] The fact that the normal state resistance, Rn, of the array is larger than R1, supports

the idea the the second set of junctions are in series, and not in parallel, with the first set.

For the dc bias case where current is fed in orientation B, the current flows in a

more complicated manner, since there are many more paths, corresponding to many

different sets of parallel junctions, in which the current can flow. Therefore, it is not

surprising that the resulting I-V curve has many more steps than those of current-feed

orientation A.

Contrast the step behavior of our arrays to that of conventional arrays. Both

van der Zant et al. (1988) and Tighe et al. (1991) report that the I-V curves of underdamped

conventional arrays display steps in the I-V curves which correspond to the simultaneous

switching of a single row of junctions across the width of the array into the resistive state.

In their case, there are as many steps as there are rows in the array. In our case, there are

as many steps as there are wires in the array through which the dc current can flow. As the

temperature is lowered, the number of voltage steps increases. We attribute this to a

breakdown in the array wires due to large currents flowing through them and to self-field

effects that are created by these currents. The non-uniform step widths is most likely due

to nonuniformities in the array.

9.2.3 Hysteresis

We attribute the curiously hysteretic behavior of the arrays to a collective

phenomena occurring the array which we can only qualitatively explain. The initial

condition of the array largely determines the paths along which the current flows in the

array. When we begin to sweep the current up, the array is in a static state. When the we
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begin to sweep the current down, the array is in a dynamic state. Since the two initial

conditions are very different, this leads to the current flowing in different paths, thus

producing hysteresis.

9.3 AC Measurements

The results of our ac measurements of Tc are the least well understood. We

measure transition temperatures ranging from 3-5 K in both our ordered and disordered

arrays. As stated earlier, the single junction critical current, ic(Tc)--0.08 pA, we have

measured is -100 times larger than that required for Vinokur et al.'s analysis (1987) or our

mean field approximation [Sohn et al., 1992b], i.e. Tc=NEj/2kB, to fit the Tc data. If the

phase transition we measured in one of our arrays is indeed of the sort which is predicted,

it would suggest that the array has effectively broken up into sets of smaller independent

arrays, each of size N"<<N (-1000). We note that N"*Neff since our Neff calculation is

valid only for our dc measurements. For our arrays in zero field, N" corresponds to -4.

When a field is present, N"-4 for the ordered arrays, but -22 for the disordered arrays

(taking the VN dependence into account). This point of view-that the arrays act as if

broken up into much smaller arrays-is supported by the fact that we have fabricated a

sample which consists of four closely positioned 10 x 10 arrays whose individual elements

each consist of 10 x 10 ordered long-range interaction arrays. This "array," whose ic,

(measured from a single junction) is approximately 7 pA, also exhibited a transition at

Tc-4 K, despite the fact that the arrays are physically 100 times smaller than the arrays we

presented in this paper. Why our arrays, in zero field act like many smaller arrays may

possibly be due to two different things. First, nonconstant stray fields, if sufficiently

large, can affect the arrays by introducing phase gradients along the wires and forcing the

disordered arrays into their high field, constant Tc, regime. Evidence that a stray field may

have affected the ordered arrays can be found in Fig. 8.14, where we see that the measured



169

Tc(f)/Tc(O) is much larger than that predicted by mean field theory [Sohn et al., 1992b. A

stray field could have depressed Tc(O), thus making Tc(f)/Tc(O) much larger than expected.

Second, the fact that the electromagnetic inductance is no negligible compared to the

Josephson inductance in the arrays may also contribute to the breaking up of the arrays.

This is certainly a subject for future investigation.

When the ordered arrays are placed under a varying magnetic field, we see that

they, like conventional arrays, display commensurability with certain fields. This means

that the array wires have phase-gradients, caused by the magnetic fields, which leads to

small circulating current loops. We have already shown in Chapter VI, that these

circulating loops in a field, fi-p/q, resemble those found in conventional arrays under the

same field strength. The disordered arrays do not show any commensurability with any

fields because, as stated previously, the cell size in the array varies too much for any field

to be commensurate with the array lattice.

9.4 Summary

Thus, we see that the unique geometry of arrays with long-range interaction leads to

the arrays having properties which are quite different from those of conventional arrays.

As we have shown in this chapter, the wires in the arrays must be treated as "imperfect,"

i.e. there is a current-induced variation of the phase along any given wire in the array. This

phase gradient is due to the fact that the geometrical inductance is not negligible compare to

the Josephson inductance of the junctions. The ratio of these two inductances leads to a

characteristic dimensionless length scale, 4., which consequently determines the effective

size of the array at least in the dc bias case.



CHAPTER X

SUMMARY AND SUGGESTIONS FOR FUTURE RESEARCH

10.1 Summary

In part A of this thesis, we have seen the importance of current direction on the

dynamical properties of proximity-effect Josephson-junction arrays. When the Lorentz

force, created by the macroscopic transport current, directs the field-induced vortices of an

array toward the high energy barrier of the island sites, only integer giant Shapiro steps are

produced by the array. The reason for this is that the vortices cannot go through the

islands, and thus no motion of the vortex superlattice, which would lead to fractional giant

Shapiro steps, can occur. The Lorentz force in both the [1 1]-oriented square- and [2T 1J-

oriented triangular-lattice arrays we studied directs the vortices toward the islands, and

indeed, these arrays produced only integer giant Shapiro steps. If, however, the Lorentz

force directs the vortices toward any other direction, motion of the vortex superlattice can

occur, and thus both integer giant and fractional giant Shapiro steps are produced. In our

experiments, the bias current of the [10]-oriented and 150 square- and [101]-oriented

triangular-lattice arrays produced such a force-these arrays produced integer and fractional

giant Shapiro steps.

The moving vortex model we presented in part A provides a phenomenological

explanation of why fractional giant Shapiro steps can or cannot occur in the various types

of arrays studied. In addition to this model, we have also presented what we call the

pendulum model. This particular model gives a detailed description of how the gauge-

invariant phase differences of the individual junctions in an array evolve per rf cycle. What

we have seen in this context is that the evolution of the phase differences are constrained by

Kirchoff's voltage law such that for the [11]-oriented square- and [21 T]-oriented
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triangular-lattice cases, the only periodic solution allowed is one which ccrresponds to

integer giant Shapiro steps. The perpendicular junctions in the [10]-oriented square- and

[101]-oriented triangular-lattice arrays, however, permit the phase differences of the other

junctions in the array to evolve more freely per rf cycle. As a result, the allowed periodic

solutions for these arrays correspond to both fractional and integer giant Shapiro steps.

In part B, we theoretically and experimentally investigated a system of ordered and

disordered Josephson junction arrays with long-range interaction. Using Monte Carlo

simulations and a mean field analysis, we showed that, in zero field, these novel arrays

undergo a phase transition to a macroscopically phase-coherent state at a temperature,

Tc=NEj/2kB. When a magnetic field, corresponding to a strongly commensurate number

of flux quanta per unit cell,ffp/q, is introduced to the system, we find that Tc=NEj/2kBv/q

in the ordered array case. In contrast, we find that the Tc for the disordered array case is

defined for four regions off. When f < h-, Tc approximates the zero-field value. When

N_ < f < I, Tc= EJ . However, when -L < f 1, Tc rises as a function off

although the exact form is presently unknown. Finally, whenf>>1, Tc asymptotically

approaches -0.75EJ'V/NkB. We note that this asymptote is -50% higher than the EjvINI2kB

asymptote predicted by Vinokur et al. (1987). As we stated in Chapter VII, the origin of

this difference has not been identified.

Experimentally, we have shown that both the ordered and disordered arrays are

extremely complicated compared to conventional Josephson-junction arrays. Through dc

transport measurements, we have shown that the wires in the arrays must be treated as

"imperfect", i.e. there is a variation of the phase along any given wire in the array if it

carries current. This variation is due to the fact the electromagnetic inductance is not

completely negligible compared to the Josephson inductance of the junctions. The ratio of

these two inductances leads to a characteristic dimension! :ss length scale, An, which
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consequently determines the effective size of the array, Neff. We have suggested that the

voltage steps in the array I-V curves are due to currents flowing along different wires in the

arrays. The hysteretic behavior of the arrays, despite the fact that they each consist of non-

hysteretic junctions, appears to be due to a collective phenomenon.

Our ac measurements of arrays with long-range interaction show that the arrays do

undergo a transition to a macroscopically phase-coherent state. The temperature at which

this occurs suggests that the arrays act as if they were broken up into smaller sets of

independent arrays. We say this because the single junction critical current, ic(Tc)-O. 1

gA, we have measured is -100 times larger than that required to account for the observed

Tc, if indeed Tc=NEj/2kB, with N-1000. Why the arrays in zero field would effectively

break up into many smaller arrays is unknown, although it may possibly be the result of a

stray field or the electromagnetic inductance being comparable to the Josephson inductance

in the arrays, consequently leading to a phase-gradient along the wires induced by thermal

noise currents.

10.2 Future Research

As we have stated in Chapter V, the exact relationship between decreasing fractional

giant Shapiro stepwidth and angle of current injection is presently unknown. Since it is

very difficult to directly measure stepwidths due to thermal fluctuations, noise, and

inhomogeneities in the array, it might be more promising to simulate the differently-

oriented rf current-biased arrays. By doing so, one could quantify the widths of the steps

produced by these arrays and thereby determine exactly what function of 0, where e is the

angle off of the [10] orientation, the stepwidths are.

The possibility of spatial period doubling in if current-biased SNS Josephson

junctions is truly an exciting prospect. As stated in part A of this thesis, such period

doubling has not been seen in these types of arrays, and it certainly would be very difficult
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to experimentally prove its existence since our present means of measuring the arrays is

based on the temporal and not spatial periodicity of the arrays. However, as we had

attempted to do, one could pursue this matter using computer simulations.

It is obvious that more work needs to be done to further understand arrays with

long-range interaction; such work, however, has been beyond the scope of this thesis. As

we have stated in Chapter IX and reiterated in our summary, our experimental evidence

seems to indicate that the arrays effectively break up into smaller arrays, and it is the Tc of

these smaller arrays that we are measuring. Fabricating and measuring different-sized

arrays can directly test whether ours is a correct interpretation. Unfortunately, this is a

rather involved project since better and more controlled techniques, other than the ones we

used and outlined in this thesis, for fabricating small critical-current Nb-A1203-Nb tunnel

junctions are needed. The question of why the disordered arrays, despite all predictions

from theory [Vinokur et al., 1987 and Sohn et al., 1992b], never showed a field-dependent

Tc is intriguing. As we have stated, a possible stray field down at the array may be an

answer to this difficult question. Certainly, this is an important issue to be resolved.

In addition, our analytical model which predicts Ic and Neff in our arrays is

incomplete since: (1) it is valid only when the array is static-it does not describe the array

when it is in the dissipative state and (2) the two ways of deriving Neff, one directly using

dI/dpn and the other using Ic/ic, produce different results, the former a factor of four

smaller than the latter. A variety of dynamical simulations could be performed to help

strengthen and complete this model. In addition, these simulations could help us better

understand the array voltage steps and hysteresis.

Finally, we note that since arrays with long-range interaction are so different from

conventional Josephson-junction arrays, it would be extremely interesting to investigate

their dynamical properties. By doing so, we should be able to obtain a better

understanding of their collective effects, and for that matter, their properties as a whole.
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APPENDIX I

FABRICATION OF SNS NIOBIUM-COPPER-NIOBIUM ARRAYS

1. Ultrasonic clean 1" x 1" x 0.25" polished sapphire substrates with Trichloroethylene
(TCE), Acetone (ACE), and Methanol (MeOH), 10 min each.

2. Photoresist-Aluminum-Photoresist trilayer

a) Spin Shipley 1400-27 photoresist @4000 rpm for 30 s

b) Bake for 30 min. @ 100-C

c) Blanket expose entire substrate for 15 s in Karl Suss Mask Aligner, using soft
contact mode

d) Evaporate 500 1 of low purity aluminum (Al) in alumina boat,
Pb < 1 x 10-6 Tort

e) Spin Shipley 1400.27 photoresist @4400 rpm for 30 s

f) Bake for 30 min @ 80-90C

Note: If the trilayer procedure is not done step after step, the photoresist will
absorb H20 and wrinkle the Al layer. Consequently, the substrate will have a very"cloudy" look. This is ok.

g) Expose bilayer mask for 4 s in Karl Suss (hard contact mode)

h) Develop fully (-1 min) in 5:1 H20:Microposit 351 Developer. Rinse
thoroughly and blow dry with dry N2.

i) Expose voltage pad mask for 4 s in Karl Suss (hard contact mode)

j) Develop fully (-I min), using fresh developer. [It is very important to use fresh
developer every time, since the developer weakens considerably after initial
use. Failure to do so will lead to bad metal-substrate adherence.] Rinse thoroughly
and blow dry.

k) Etch Al until completely gone (-2 min). Rinse thoroughly and blow dry.

1) Form undercut using fresh developer (-30 s). Rinse and blow dry.

m) Back-etch Al in undercut (-2 min), rinse and blow dry.
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3. Copper Evaporation

a) Mount sample on evaporator sample block and install, using insulating teflon
sheet and screws. [Always a good idea to clean teflon sheet before installing
sample block. Use scotch-brite and rinse with either MeOH or EtOH. Towel
dry.] Connect wire from sample block to high-voltage feedthrough for application
of rf. Check continuity and grounding.

b) Place high purity (99.999%) copper in large tungsten or molybdenum boat and
mount in evaporator using the electrodes for copper.

c) Pump chamber to Pb < 2x10-7 Ton" (degas on).

Rf clean substrate:

-turn ion gauge off, Pb <lx1O- 7 Torr
-adjust Ar pressure in chamber to 15 mTorr (100 mTorr foreline
pressure)
-attach rf matchbox
-open shutter
-set forward power on rf supply to 12 W and tune loading inductor
to minimize reflected power until it reads 0-1 W. The dc self-bias
voltage on rf matchbox meter should read "100 V. [Meter on
matchbox is fairly unreliable. Place trust on the rf power supply
reading.] Rf clean for 5-6 min and close shutter.

d) Shut off Ar flow and pump chamber again to Pb < 2x 10-7 Torr (degas on).

Evaporate:

-turn on thickness monitor and set density p=8.96 gm/cm 3.
-slowly increase current. Cu should melt -8 Amps, if new. If

previously melted, will melt 8-9.5 Arpps.
-boil off impurities for > 2 min (>300 A total)
-open shutter and zero thickness monitor simultaneously
-increase current up to 13.5 Amps. [Important not to go above
15 Amps as substrate will overheat, leading to burnt photoresist
and Cu peeling.]
-evaporate -3500 A copper and immediately turn off power
supply.

-cool down sample before opening up chamber. [Do not close the
shutter while cooling. If shutter is closed, heat cannot escape and
sample will overheat, leading to the Cu film peeling back.]

4. Nb sputtering

a) Cover Al magnetron target with Aluminum foil. Using dry N2, blow away any
particulates that may have fallen onto the Nb target.

b) Mount substrate using stainless steel substrate clamp with 1" square holder,
making sure that the shield and substrate holder are not electrically shorted.
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c) Mount 1 5/8" diameter O-xk space shield. This should be -0.25" from substrate
and again, make sure shield and substrate holder are not electrically shorted.

d) Pump chamber to Pb < 1.5x10-7 Torr (degas on). This usually takes 4-5 hrs.

e) Once chamber has reach appropriate pressure, start Meissner shroud. Chamber
pressure should go down to Pb < 9x10- 8 Torr. Turn off ion gauge.

f) Cooling water should be flowing through sample holder and appropriate
magnetrons

g) Rotate substrate above Al target position

h) Start Ar flow (35 sccm), and adjust gate valve until chamber pressure reads
-6mTorr.

i) Tune matchbox so that rf power source reads 23 W forward power and 0-1 W
reflected power. If plasma does not ignite, close diffusion "pump" flap so that
chamber pressure increases to 25-29 mTorr. Plasma should ignite at this pressure
and have a dc self-bias voltage of 600 V; open flap and return chamber pressure to
6 mTorr. Turn off if source.

j) Increase rheostat until voltage reads 300 V. At this point, plasma should ignite.
If it does not, close the flap until it does. Once ignited, open flap and increase
voltage to 500 V; 150 mA.

k) dc clean target for total of 15 min. After an initial 8 min, begin rf Ar ion etching
substrate over Al target on and off at 1 min intervals for a total of 4 min. At 15 min
mark, turn off rf power, and immediately rotate substrate niobium target, and put it
to ground. This should all be done within 5 s. [Greater than 5 s will lead to a poor
Cu-Nb interface and subsequently low Kosterlitz-Thouless transition temperatures.]

I) Sputter Nb onto substrate for 10 min (200 klmin).

m) Let substrate warm up (5-6 hrs) before opening chamber.

5. Lift off in ACE, 10-30 min.

-Ultrasonic substrate 1 min in fresh ACE, 2 min. in MeOH
-Blow dry

6. Clean masks

Rinse masks with propylene glycol monomethyl ether acetate (PGMEA)
and MEOH and blow dry. [Best to lightly wipe the chrome surface of masks with
a PGMEA-soaked cloth first before rinsing. This wipes away any "large" and
stubborn photoresist particulates sticking to the surface of the mask.]
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7. Inverting photoresist

a) Spin Hoechst AZ-5214E photoresist @<4000 rpm for 30 s (1.4 p.m).
[Shipley 1400 series photoresist is incompatible with Hoechst AZ photoresist. The
solvent for the AZ resist is PGMEA, not ACE. AZ resist is also a noninverting
resist, just skip inverting steps.]

b) Bake for 30 min @900 C

c) Expose array mask for 4 s in Karl Suss (hard contact mode). [Vacuum pressure
mode in Karl Suss should be > 8 barr. If not, check for leaks as anything less
than 8 barr will lead to unusually rounded islands and shorts.]

d) Inverting step:

-bake sapphire substrate in oven for 4 min @ 120*C
-blanket expose for 90 s in Karl Suss (soft contact mode)]
-develop 75 s with Hoechst AZ-422 MIF for inverting process
(noninverring pr-3 min)

-rinse very thoroughly (+5 min) and blow dry.

8. Reactive ion etch

a) Turn on cooling water between sample holder and cathode

b) Pretune matchbox so that rf supply reads 44 W forward power and 0-1 W
reflected power. Matchbox self-bias voltage should be - 30 V.

c) After pumping and venting (with dry N2) 3 times, vent chamber final time and
mount sample using Si spacer between clips and substrates.

d) Pump chamber < 100 mTorr and vent 3 times

e) Set flow rate of SF6 to 13 sccm (-250 mTorr chamber pressure). Flush
chamber for 15 min.

f) RIE for 4-5 min (Nb etch rate -750 kmin). [Don't worry if newly exposed
Cu surface starts to darken. There is an additional chemical reaction between the
plasma and the photoresist/pump oil going on in the chamber. The by-products of
this reaction adhere to the Cu surface. This does not affect the properties of the
array. The colder the cooling water and the better the pumping minimizes this
effect, as well as minimizing the "cinnamon" odor that follows when opening up
the chamber.]

g) Turn off rf and SF6 gas flow

h) Vent and pump with dry N2 three times and then vent to atmosphere.

i) Remove sample



182

9. Strip photoresist

a) Soak substrate in heated Hoechst AZ-300T photoresist stripper
(70-80'C, low setting)

b) Strip for 25-30 min and then ultrasonic clean 1-2 nin.

c) Rinse with H120 and blow dry.
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g) Rotate substrate above Al target position

h) Start Ar flow (35 sccm) and adjust gate valve until chamber pressure reads
-6 mTorr.

i) Tune matchbox so that rf power source reads 8 W forwards power and 0-1 W
reflected power. The dc self-bias voltage should be 250 V. Turn off rf source.

j) Start dc cleaning of niobium target (500 V; l50mA) for 15 min. At the 15 rin
mark, start rf cleaning of the the substrate.

k) After 5 minutes, immediately turn off rf power, rotate substrate niobium target,
and put it to ground.

1) Sputter Nb onto substrate for 10 min (200 Ilmin).

m) Let substrate warm up (5-6 hrs) before opening chamber.

4. Liftoff in ACE, 30-40 min

-Ultrasonic substrate 20 min in fresh ACE, 5 min each in TCE, ACE, and
MeOH
-Blow dry

5. Follow step 2 for repattering

6). A120 3-Nb deposition

a) Again mount substrate in sputtering chamber and pump system down as
outlined in 3a-d.

b) Rotate substrate above Nb target

c) Once chamber has reached appropriate pressure, start Ar flow (35 sccm, and
adjust gate valve until chamber pressure reads -6 mTorr. Tune matchbox so that rf
power source reads 23 W forward power and 0-1 W reflected power. The dc
self-bias voltage should be 600 V. Turn off rf source.

d) dc clean Al target 6 min (500 V, 85 nA). At the 6 min mark, begin rf Ar ion
etching substrate over Nb target on and off at 1 min intervals for a total of 5 min.
At the 15 min mark, turn off rf power, immediately rotate substrate over Al target
and put it to ground.

e) Sputter Al onto substrate for 15 s (104 klmin).

f) Reduce Ar flow to zero and pump chamber out. Close gate valve and fill
chamber with pure 02 until chamber pressure reads 500 mT. Oxidize 10 min.



APPENDIX II

FABRICATION

OF

SIS NIOBIUM-ALUMINUM OXIDE-NIOBIUM ARRAYS

1. Ultrasonic clean 2.5" diameter polished silicon oxide wafer with TCE, ACE, and
MeOH, 10 min each.

2. Phc)toresist trilayer

a) Spin Shipley 1400-27 photoresist @4800 rpm for 40 s

b) Bake for 25 min @ 70C

c) Cool on vent and soak in chlorobenzene 10 min

d) Bake for 12 min @ 70'C

e) Expose pads, covering the array with black electrical tape, for -2 min in the Karl
Suss (hard contact mode)

f) Expose entire mask, including array section, for 3.5 s in Karl Suss (HC mode)

g) Develop fully (-15 s), using fresh 5:1 H2 0:Microposit 351 Developer.
Rinse thoroughly and blow dry with dry N2.

3. Nb sputtering

a) Using dry N2, blow away any particulates that may have fallen onto the Nb
target.

b) Apply sparingly Apiezon grease (H) onto substrate holder and mount
substrate using stainless steel substrate clamp with 2.25" circular holder, making
sure that the shield and substrate holder are not electrically shorted.

c) Mount 1.75" diameter dark space shield. This should be -0.25" from substrate
and again, make sure shield and substrate holder are not electrically shorted.

d) Pump chamber to Pb < 1.5xl0 "7 Torr (degas on).

e) Once chamber has reached appropriate pressure, start Meissner shroud.
Chamber pressure should go down to Pb < 9x10 "8 Torr. Turn off ion gauge.

f) Cooling water should be flowing through sample holder and appropriate
magnetrons.
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g) Pump chamber until Pb < 1 x 10-7 Torr. Again adjust Ar flow and chamber
pressure and begin dc cleaning of Al target (500 V, 85 mA) for 15 min. At
15 min mark, rotate substrate over Al target.

h) Sputter Al onto substrate for 15 s (104 A/min).

i) Repeat step f. However, oxidize Al for 30 min.

j) Pump chamber until Pb < 1 x 10-7 Tort (degas on). Start Meissner shroud and
make sure substrate is over the Al target. Turn degas off and start Ar flow (35
sccm). Adjust gate valve until chamber pressure reads -6 mTorr.

k) dc clean Nb target for 20 min (500 V, 150 mA). At the 20 min mark, rotate

substrate over Nb target.

1) Sputter Nb onto substrate for 10 min (200 A/min).

m) Let substrate warm up (5-6 hrs) before opening chamber.

7. Liftoff--repeat step 4.

Note: The above protocol will produce junctions whose jc's are -7 Amps/cm 2.



APPENDIX III

FABRICATION

OF

NIOBIUM-ALUMINUM OXIDE-NIOBIUM JUNCTIONS

1. Follow steps 1-5 in Appendix I.

2. A120 3-Nb deposition

a) Mount substrate in sputtering chamber and pump system down as outlined in

steps 3 a-d in Appendix I.

b) Rotate substrate above Nb target

c) Once chamber has reached appropriate pressure, start Ar flow (35 sccm, and
adjust gate valve until chamber pressure reads -6 mTorr. Tune matchbox so that rf
power source reads 23 W forward power and 0-1 W reflected power. The dc
self-bias voltage should be 600 V. Turn off rf source.

d) dc clean A] target 6 min (500 V, 85 mA). At the 6 min mark, begin rf Ar ion
etching substrate over Nb target on and off at 1 min intervals for a total of 5 min.
At the 15 min mark, turn off the rf power, immediately rotate substrate over Al
target and put it to ground.

e) Sputter Al onto substrate for 30 s (104 A/min).

f) Reduce Ar flow to zero and pump chamber out. Close gate valve and f'lu
chamber with pure 02 until chamber reaches desired pressure (see Table AIMl. 1 at
end of this appendix). Wait for a set amount of time.

g) Pump chamber until Pb < 1 x 10-7 Torr (degas on). Start Meissner shroud and
make sure substrate is over the Al target. Turn degas off and start Ar flow (35
sccm). Adjust gate valve until chamber pressure reads -6 mTorr.

h) dc clean Nb target for 20 min (500 V, 150 mA). At the 20 min mark, rotate

substrate over the Nb target.

i) Sputter Nb onto substrate for 10 min (200 A/min).

j) Let substrate warm up (5-6 hrs) before opening chamber.

3. Liftoff--repeat step 4 in Appendix II.
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Table AIII. 1. The various oxygen pressures and "wait" timr- - needed to oxidize the Al
layer to produce the given critical current densities. The critical current densities are
reproducible to within 20%. The asterisk (*) denotes a recipe developed by J. H. Kang
(1991).

Pressure (mTor Time (min) Jc (Amp/cm ) Rn (ohm)

1000 60 256 7

150" 30 2400 10

100 10 6800 1



APPENDIX IV

MICROFABRICATION PROTOCOLS

Fabricating Masks (Dark Field)

a) Design mask on a transparency sheet. Use black electrical tape to clearly define
edges

b) Using the equation,

L =f(2 +M + YM)

where L is the camera distance away from the drawing,f is the focal length of the
camera, and M is the magnification, take photos of the drawing. The film used
should be Kodak Ektagraphic HC Slide Film

c) Develop film according to manufacturer's instructions

d) Ultrasonic clean Chrome mask with TCE, ACE, and MeOH, 10 min each

e) Spin Shipley 1400-27 photoresist on mask at 4000 rpm for 30 s

f) Bake 30 min at 90*C

g) Expose mask to negative 8-9 s

h) Develop in 5:1 351 Microposit Developer:H20 for 1 min

i) Etch chrome 2 min

j) Rinse with H20 and blow dry

Cleaning Chrome Masks

a) Soak masks, chrome side up, in a 3:7 30% H20 2:H2SO 4 bath until solution
stops bubbling

b) Rinse thoroughly with distilled H20

c) Rinse with ACE, blow dry

d) Rinse with MeOH, blow dry
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Recycling Sapphire Substrates [adapted from D. Abraham, 1983]

a) Remove any photoresist by soaking substrates in heated AZ-300T photoresist
stripper (70-801C, low setting) for 25-30 min. Failure to do so will result in
photoresist reacting with the various acid and base baths that follow. Rinse
thoroughly.

b) Soak substrates in a saturated solution of KOH until either the metal is visibly
gone or the solution has stopped bubbling. Rinse thoroughly.

c) Soak substrates in a 1:1 HCI:HNO3 bath. Be sure not to have any metal
attached to the teflon substrate holdt-r or else the metal will dissolve and the residues
will dirty the substrates.

d) After rinsing substrates thoroughly with water, soak them in a boiling 5% soap
(Liquinox) solution for 20-30 min.

e) Rinse thoroughly and place in ultrasonic for 20 min. Blow dry.

Note: Substrates can for the most part be recycled up to two times. Further
recycling, especially substrates used for fabricating SNS arrays, will lead to
noticeable etching (from other procedures, especially reactive-ion-etching) of the
polished surface.

Alternatives to Photoresist-Aluminum-Photoresist Trilayer-Chlorobenzene

Techniques

I. For small undercuts (< 0.5 ±m) [Adapted from A. T. Johnson, 1991]

-spin Shipley 1400-27 photoresist at 4800 rpm for 40 s (1.2 pi).
-bake 25 min at 700C
-soak in chlorobenzene 10 min
-bake 12 min at 700C
-expose with mask 4-5 s
-develop in 5:1 351 Microposit Photoresist developer:H20
approximately 1-2 min

II. For large undercuts (> 0.5 pm)

-spin Shipley 1450J photoresist at 6000 rpm for 30 s
-bake 20 min at 650C
-cool to room temperature
-soak in chlorobenzene 10 min
-bake for 10 min at 650 C
-expose with mask for -15 s
-develop in 5:1 351 Microposit Photoresist developer:H20
approximately 1-2 min
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Aluminum Etch

Mix: 84% phosphoric acid (H3P04 )
5% acetic acid (CH3COOH)
5% nitric acid (HNO3)
6% water (H120)

Chrome Etch

Mix: 396 ml H20
24 n-l HN0 3
62 g ammonium cerium nitrate
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